The Improvement of Interlaminar Shear Strength for Low Density 2-D Carbon/Carbon Composites by Additives

첨가제에 의한 저밀도 2-D 탄소/탄소 복합재의 층간전단강도 개선

  • 손종석 (충남대학교 고분자공학과) ;
  • 정구훈 (충남대학교 고분자공학과) ;
  • 주혁종 (충남대학교 고분자공학과)
  • Published : 2000.11.01

Abstract

The optimum cure cycle and carbonization condition were selected by the DSC and TGA analysis and green bodies were prepared by the method of hot press molding and then carbonized up to 140$0^{\circ}C$. Additives such as graphite powder, carbon black, milled carbon fiber and carbon fiber mat, which were considered to be effective in improving the interlaminar shear strength, were also added to check their effects on the density and porosity of products. Then, their relations with mechanical properties such as ILSS and flexural strength were investigated. The composites added 9 vol% of graphite powder showed the greatest values of ILSS and flexural strength. Otherwise, in case of adding carbon black, the composites showed the slight improvement of ILSS at its contents of 3 vol% but the flexural strength was decreased. When milled carbon fiber and carbon fiber mat were added, the lack of resin and the heat shrinkage during the carbonization caused the delamination, resulting in decreasing the density, ILSS and flexural strength.

DSC와 TGA 분석으로 탄소섬유/페놀수지 복합재의 최적 경화조건과, 탄화조건을 선정하고 핫프레스 몰딩 방법으로 복합재를 제조한 후 140$0^{\circ}C$까지 탄화하였다 또한 층간전단강도의 개선에 효과적이라 생각되는 흑연분말, 카본블랙, 분쇄된 탄소섬유 및 탄소섬유 매트를 첨가하여 이러한 첨가제가 밀도 및 기공도에 미치는 영향과 ILSS, 굽힘강도와 같은 기계적 물성과의 상관관계에 대하여 연구하였다. 흑연분말을 약 9 vol% 첨가한 경우 가장 큰 ILSS 값과 굽힘강도 값을 나타내었고 카본블랙의 경우, 약 3 vol%에서 ILSS 값이 약간 증가하였으나 굽힘강도는 감소하였다. 분쇄된 탄소섬유와 탄소섬유 매트 첨가시 수지부족과 열수축에 의한 층간분리가 발생하여 밀도와 ILSS 및 굽힘강도를 감소시키는 결과를 나타내었다.

Keywords

References

  1. 24th Biennial Conference on Carbon C. Li;B. Ma;X. Huo;Z. Jin
  2. Introduction to Carbon Science L. A. S. Edwards;L. A. S. Edwards;R. Menendez;B. Rand;S. West;A. J. Hosty;T. Mays;H. Marsh(ed.)
  3. Fundamentals of Composites Manufacturing A. Brent Strong;C. A. Ploskonka(ed.)
  4. Carbon Fibers in Composite Materials R. M. Gill;L. E. Nielson;R. F. Landel;K. K. Chawla
  5. Carbon v.35 no.2 K. A. Trick;T. E. Saliba;S. S. Sandhu
  6. Carbon v.34 no.7 L. M. Manocha;H. Bhatt;S. M. Manocha
  7. Carbon v.24 no.5 Z. Lausevic;S. Marinkovic
  8. The European Carbon Conference M. Takehara;T. Kingetsu;H. Masumoto;E. Yasuda
  9. 24th Biennial Conference on Carbon H. Deng;B. Ma
  10. 22nd Biennial Conference in Carbon E. Yasuda;Y. Hotta;S. M. Park;J. Ariyoushi;T. Akatsu;Y. Tanabe
  11. Carbon v.26 no.2 E. Yasuda;Y. Tanabe
  12. 22nd Biennial Conference on Carbon R. Menendez; J. J. Fernandez;A. Figueiras;C. Blanco;J. Bermejo;J. Bonhomme;J. Belzunce
  13. Test Methods v.Ⅵ R. Byron Pipes;R. A. Blacke;J. W. Gillespie;L. A. Carlsson