• Title/Summary/Keyword: Interior Angle

Search Result 160, Processing Time 0.027 seconds

Mode I crack propagation analisys using strain energy minimization and shape sensitivity

  • Beatriz Ferreira Souza;Gilberto Gomes
    • Structural Engineering and Mechanics
    • /
    • v.92 no.1
    • /
    • pp.99-110
    • /
    • 2024
  • The crack propagation path can be considered as a boundary problem in which the crack advances towards the interior of the domain. Consequently, this poses an optimization problem wherein the local crack-growth direction angle can be treated as a design variable. The advantage of this approach is that the continuous minimization of strain energy naturally leads to the mode I propagation path. Furthermore, this procedure does not rely on the precise characterization of the stress field at the crack tip and is independent of stress intensity factors. This paper proposes an algorithm based on internal point exploration as well as shape sensitivity optimization and strain energy minimization to determine the crack propagation direction. To implement this methodology, the algorithm utilizes a modeling GUI associated with an academic analysis program based on the Dual Boundary Elements Method and determines the propagation path by exploiting the elastic strain energy at points in the domain that are candidates to be included in the boundary. The sensitivity of the optimal solution is also assessed in the vicinity of the optimum point, ensuring the stability and robustness of the solution. The results obtained demonstrate that the proposed methodology accurately predicts the crack propagation direction in Mode I opening for a single crack (lateral and central). Furthermore, robust optimal solutions were achieved in all cases, indicating that the optimal solution was not highly sensitive to changes in the design variable in the vicinity of the optimal point.

Study on Sensitivity of Variables of the Experiment to Evaluate Discomfort Glare of Interior Artificial Illumination (건축실내 인공조명의 불쾌글레어 평가실험에 적용된 실험변수의 민감도 분석에 관한 연구)

  • Lee, Jin-Sook;Kim, Won-Do;Kim, Chang-Soon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.1
    • /
    • pp.24-32
    • /
    • 2008
  • The ultimate purpose of the study is to develop a discomfort glare forecasting formula that can be practically used in Korea in order to effectively forecast discomfort glare considering the optical characteristics of the Koreans. The study was to examine the relations between discomfort glare and the variables such as luminance, background luminance, solid angle, luminous area and louver. To this end, experiments were conducted in a mock-up office that emulates the lighting environment of an ordinary office. The study was conducted by four steps as follow. First, previous studies on discomfort glare rating to define and rate discomfort glare were analyzed and modified to be applied to the experiments of this study. Second, experiment variables, variable scope, evaluation objects and evaluation points were determined after review on existing discomfort glare evaluation experimental formulas. Third, experiments were conducted in a mock-up office to be able to control variables. Finally, sensitivity of experiment variables were analyzed through examination of the relation between discomfort glare and the variables such as luminance, solid angle, louver, luminous area and subject's position. The result showed that the most influential variables on discomfort glare of an artificial light source is luminance and louver, luminous area and subject's position(solid angle) followed.

Experimental analysis of the sedimentation processes by variation of standing angle in the improved-pneumatic-movable weir (실내실험에 의한 가동보 기립각도 변화에 대한 토사의 퇴적 과정 분석)

  • Lee, Kyung Su;Jang, Chang-Lae
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.9
    • /
    • pp.795-802
    • /
    • 2018
  • This study investigates the hydraulic characteristics and the delta development processes in the improved-pneumatic-movable weir by considering the standing angle of the weir through laboratory experiments. The delta migration speed decreases rapidly with time. As the ratio of delta height to water depth increases, the dimensionless delta migration speed decreases at the delta point. Therefore, the water depth decreases as the delta height increases. Although the delta volume is large due to the effective height of the delta, the delta migration speed and sediment deposition decreases because of the backwater effect on the delta. On the same bed slope condition, the larger the weir height, the larger the delta volume and the ratio of delta height to delta front length is close to 1.0. The delta development could be suppressed when the weir is high. Therefore, the condition that the weir is high has the suppressing effect on the delta developments.

Scanning Determination & Observation Features by Sex shown in the Process of Acquiring Visual Information - With the Object of Subway Station Hall Space - (시각정보획득과정에 나타난 주사판정과 성별 주시특성 - 지하철 홀 공간을 대상으로 -)

  • Kim, Jong-Ha;Choi, Gae-Young
    • Korean Institute of Interior Design Journal
    • /
    • v.23 no.6
    • /
    • pp.115-124
    • /
    • 2014
  • This study has carried out scanning tests in order to figure out the features of scanning search by sex of space users, with the result of which the validity of data has been estimated. In this research, the scanning patterns were set up for verifying the typology of scanning paths and then the reason for determining scanning paths and the validity of estimation method were reviewed. Since the observation features depends on sex, the analysis of visual activities for acquiring any information in a space will reveal the intention and purpose of space users. The findings by analyzing the features of scanning pattern by sex which were found at the determination of scanning patterns can be defined as the followings. First, for estimating the process of space-information search, the movement distance at each point of continuative-observation data from the angle of eye-movement has been extracted, on the ground of which the fixation and movement of eye have been defined for the establishment of scanning-cut characteristics. Second, the scanning times were estimated for the extraction of effective observation data that would be used for comparative analysis, which showed that men had more data (3,398.2/64.4%) than women (2,998.2/55.6%). This enables the acknowledgment that the scanning cut of men was relatively less, which indicates that men will acquire more information on space than women in the process of observing any space. Third, men's scanning times (58.0 times/2.02 seconds) were less than those of women (71.9 times/1.39 seconds) while the scanning time of the former was longer than that of the latter, which shows the feature that it takes longer for men than women in scanning while the scanning times of the former is less than those of the latter. Fourth, the observation features can be determined that the combination of this result with the predominance character by sex for a general viewpoint to be employed indicates that while men employ mixed-scanning for observation activities to acquire space-information spending for longer time, women, by concentrated-scanning, focus on a single point for shorter time or stay at one location for a considerably long time for space-information acquirement.

Inelastic Behavior of Post-tensioned Wide Beam System with different Reinforcement ratios within Column core (포스트텐션을 도입한 넓은 보에서 기둥 폭 내부에 배근된 보강재의 정착비에 따른 비탄성 거동 평가)

  • Choi Yun-Cheul;Lim Jae-Hyung;Moon Jeong-Ho;Lee Li-Hyung;Kwon Ki-Hyuk
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.1 s.85
    • /
    • pp.85-94
    • /
    • 2005
  • Post-tensioned Precast concrete System(PPS) consists of U-shaped precast wide beams and concrete column. The continuity of beam-column joint is provided with floor concrete cast on the PC shell beam and post-tensioning. The purpose of this paper is to evaluate the response of PPS interior beam-column joint subjected to cyclic lateral loading. To this end, an experimental investigation was performed with three half-scale specimens of interior connection. The design parameters are the amount of beam reinforcement placed inside the joint core. The test results showed that cracks were distributed well without my significant degradation of strength and ductility. Also, it was found that the prestressing may affect to alter the torsional crack angle. And the specimens sufficiently resist up to limiting drift ratio of 0.035 in accordance with the provisional by ACl of acceptance criteria for concrete special moment frames.

Cyclic Loading Test for TSC Beam - PSRC Column Connections (TSC 합성보 - PSRC 합성기둥 접합부에 대한 주기하중 실험)

  • Hwang, Hyeon Jong;Eom, Tae Sung;Park, Hong Gun;Lee, Chang Nam;Kim, Hyoung Seop
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.6
    • /
    • pp.601-612
    • /
    • 2013
  • In the present study, details of the TSC beam-to-PSRC column connection for low and middle seismic zones were developed. For ease construction, the top and bottom flanges of the steel section of the TSC beam were discontinuous at the joint face on purpose, while the web passes through the joint. Thus, tensile resistance of the top and bottom flanges is not considered in the calculation of nominal strength of the connection. Cyclic loading tests on two interior connections and an exterior connection were performed to verify the seismic performance. The test parameter for two interior connections was the depth of the TSC beams: 600 and 700 mm including the slab depth. The test results showed that the nominal strength of the connections predicted by KBC 2009 correlated well with the test results. The connection specimens exhibited relatively good deformation and energy dissipation capacities, greater than the requirements for the ordinary and intermediate moment frames. Ultimately, the connection specimens were failed at the story drift ratios of 3.0 to 4.0 % due to local buckling and tensile fracture of the web of the TSC beam passing through the joint. By modifying the existing provisions of ASCE, the joint shear strength of the TSC beam-PSRC column connection was evaluated.

A study on Utilization of Dancing Light through Zone Lighting of the Indoor Proscenium Stage (실내 프로시니엄 공연무대의 구역 디자인 구역조명을 통한 무용 조명 활용방법에 관한 연구)

  • Lee, Jang-Weon;Han, Me-Hui
    • Korean Institute of Interior Design Journal
    • /
    • v.18 no.1
    • /
    • pp.43-53
    • /
    • 2009
  • This study is to investigate the utilization of Indoor Proscenium Stage Zone Lighting method in the dancing performance. In other words, it is about how we can utilize the principle of zone lighting in dancing performance, a kind of stage art. Stage lights give lights on the stage. Therefore they play big and important roles in dancing performances. Lightings make big influence on the overall atvosphere and situations of the dancing work but most of dancers do not perceive their importance and furthermore they don't know about the lightings very well. To let them know about stage lightings better, we studied lightings form the perspective of the dancers who face the lightings without great knowledge thresh the articles and literature related general lightings and lighting design, books related to stage lightings and dancing lightings, previous studies and academic articles. The most important part of this study is to understand and utilize the principle of zone lightiing. Zone lighting is generally called as cross lighting, which means single light from the crossed two lights. When looking into the principle of the zone lighting of the Indoor Proscenium Stage, it means 45 degree lighting from both sides of the top form the point of the dancer When more than two lights are used, the angle of the light should be $90^{\circ}$or 120. It is the principle of the lighting technology showing the face and body of the dancers ing three dimension. Applying for the principle of this zone lighting to the dancing performance of Indoor Proscenium Stage, the lighting methods and the usage of the lightings were studied. As shown above, the role of the lighting is very important in dancing configuration. We hope that the perception on the dancing lighting will be changed and studies on the dancing lightings. By understanding and applying more principles of lighting, we will make efforts to make better dancing performance and dancing conporsers and dancers shall make more efforts and studies on lighting for better works. Through such efforts, we can have more experts and professionals In dancing lighting field and they will help us to describe and express the intention of the dancing work better as dancing artists. We hope that there will be better quality performances through more and diversified studies in this field.

Cross-sectional Design and Stiffness Measurements of Composite Rotor Blade for Multipurpose Unmanned Helicopter (다목적 무인헬기 복합재 로터 블레이드의 단면 구조설계 및 강성 측정)

  • Kee, Young-Jung;Kim, Deog-Kwan;Shin, Jin-Wook
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.6
    • /
    • pp.52-59
    • /
    • 2019
  • The rotor blade is a key component that generates the lift, thrust, and control forces required for helicopter flight by the torque transmitted through the hub and the blade pitch angle control, and should be designed to factor vibration characteristics so that there is no risk of resonance with structural safety. In this study, the structural design of the main rotor blade for MPUH(Multi-Purpose Unmanned Helicopter) was conducted and the sectional stiffness measurement of the fabricated blade was performed. The evaluation of the vibration characteristics of the main rotor system was then conducted factoring the measured stiffness distribution. The interior of the rotor blade comprised of the skin, spar, and torsion box, and carbon and glass fiber composites were applied. The Ksec2D program was applied to predict the stiffness of blade, and the results were compared to the measured data. CAMRADII, a comprehensive rotorcraft analysis program, was applied to investigate the natural frequency trends and resonance risks due to the rotor rotation.

A Study on Improving the Capacity of Absorbing Boundary Using Dashpot (점성감쇠기를 이용하는 흡수경계의 성능 향상에 관한 연구)

  • Kim, Hee-Seok;Lee, Jong-Seh
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.5
    • /
    • pp.629-640
    • /
    • 2007
  • In this paper an analytical study is carried out to improve the capacity of absorbing boundary using dashpot, one of the most widely used absorbing boundaries in FEM. Using 2-D harmonic plane wave equation, absorbing boundary condition is modified to maximize its capacity according to the incident angle. Validity of the absorbing boundary conditions which is modified is investigated by adopting the solution of Miller and Pursey. The Miller and Pursey's problem is then numerically simulated using the finite element method. The absorption ratios are calculated by comparing the displacements at the absorbing boundary to those at the free field without the absorbing boundary. The numerical study is carried out through comparison of displacement at the interior region and the boundary of the numerical model.

Position Estimation of a Missile Using Three High-Resolution Range Profiles (3개의 고 분해능 거리 프로파일을 이용한 유도탄의 위치 추정)

  • Yang, Jae-Won;Ryu, Chung-Ho;Lee, Dong-Ju
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.7
    • /
    • pp.532-539
    • /
    • 2018
  • A position estimation technique is presented for a missile using high-resolution range profiles obtained by three wideband radars. Radar measures a target range using a reflected signal from the surface of a missile. However, it is difficult to obtain the range between the radar and the origin of the missile. For this reason, the interior angle between the moving missile and tracking radar is calculated, and a compensated range between surface of the missile and its origin is added to the tracking range of the radar. Therefore, position estimation of a missile can be achieved by using three total ranges from each radar to the origin of the missile. To verify the position estimation of the missile, electromagnetic numerical analysis software was used to prove the compensated range according to the flight position. Moreover, a wideband radar operating at 500-MHz bandwidth was applied, and its range profile was used for the position estimation of a missile.