• Title/Summary/Keyword: Interface resistance

Search Result 884, Processing Time 0.026 seconds

EVALUATION OF HYDROGEN INDUCED DISBONDING FOR CR-MO-V STEEL/AUSTENITIC STAINLESS OVERLAY

  • Kim, Byung-Hoon;Kim, Dong-Jin;Kim, Jeong-Tae
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.211-216
    • /
    • 2002
  • To investigate transition region in welded overlay relating to disbonding crack, the effect of vanadium addition on disbonding of Cr-Mo steels overlay welded with austenitic stainless steel was studied. V modified Cr-Mo steels have a higher resistance to disbonding than V free Cr-Mo steel. One reason is due to the fact that fine vanadium carbide precipated in base metal traps hydrogen and thus decreases the susceptibility to the disbonding. The second is related to the higher stability of the vanadium and stable carbides formed during PWHT, in which the carbon diffusion to the interface is lower than for V free Cr-Mo steel. Decreasing the carbon content at the interface of the weld overlay shows good resistance to the disbonding. Hence, it is important to control the carbon content at the interface of the weld overlay.

  • PDF

Computer simulation to determine system parameters of the square-wave adapted fast impedance analyzer for the electrode - electrolyte interface analysis (구형파를 이용한 전극계면 분석용 고속 임피던스 분석기의 설계변수 확정을 위한 컴퓨터 시뮬레이션)

  • Kim Gi-Ryon;Kim Gwang-Nyeon;Shim Yoon-Bo;Jeon Gye-Rok;Jung Dong-Keun
    • Journal of the Korea Society for Simulation
    • /
    • v.14 no.2
    • /
    • pp.45-55
    • /
    • 2005
  • There are electric double layer capacitance, polarization resistance and solution resistance in the interface between electrode and solution. Electrode process could be evaluated by the electrical impedance analysis. The necessities of the electrochemical cell analysis with high speed impedance analyzer are followings: minimization of the effects of electric stimulation on electrochemical cell and the concentration of reactive materials, and optimization of impedance signal resolution. This paper represents the design criteria for the selection and stimulation to develop fast impedance analyzer prototype for a electrochemical cell. It was suggested that the design of 470k sample/s sampling rate, 13 bit ABC resolution, and 140ms recording time is required for high speed impedance analysis system in frequency range between dc and 10kHz.

  • PDF

Corrosion Characteristics of TiN and ZrN Coated Orthodontic Brackets (TiN 및 ZrN 코팅된 교정용 브라켓의 부식특성)

  • Kim, W.G.;Kim, D.Y.;Choe, H.C.
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.4
    • /
    • pp.163-168
    • /
    • 2008
  • The dental orthodontic bracket requires good mechanical properties, such as elastic strength and frictional resistance, combined with a high resistance to corrosion. The objective of this study was to investigate the effects of TiN and ZrN coating on corrosion resistance of orthodontic brackets using various electrochemical methods. Brackets manufactured by Ormco Co. were used, respectively, for experiment. Ion plating was carried out for coatings of bracket using Ti and Zr coating materials with nitrogen gas. Ion plated surface of each specimen was observed with field emission scanning electron microscopy(FE-SEM), energy dispersive Xray spectroscopy(EDS) and electrochemical tester. The corrosion potential of the TiN and ZrN coated bracket was comparatively high. The current density of TiN and ZrN coated bracket was smaller than that of non-coated bracket in 0.9% NaCl solution. Pit nucleated at angle of bracket slot.

Electrical and structure properties of W ohmic contacts to InGaN (W/InGaN Ohmic 접촉의 전기적 구조적 특성연구)

  • Han-Ki Kim;Tae-Yeon Seong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 1999.11a
    • /
    • pp.76-76
    • /
    • 1999
  • Low resistance ohmic contacts to the Si-doped InGaN(~$\times$10$^{19}$ ㎤) were obtained using the W metallization schemes. Specific contact resistance decreased with increasing annealing temperature. The lowest resistance is obtained after a nitrogen ambient annealing at 95$0^{\circ}C$ for 90s, which results in a specific contact resistance of 2.75$\times$10$^{-8}$$\textrm{cm}^2$. Interfacial reactions and surface are analyzed using x-ray diffraction, transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The X-ray diffraction results show that the reactions between the W film and the InGaN produce a $\beta$-W$_2$N phase at the interface. TEM results also show that the $\beta$-W$_2$N has a rough interface, which increase contact area. It shows that the morphology of the contacts is stable up to a temperature as high as 95$0^{\circ}C$. Possible mechanisms are proposed to describe the annealing temperature dependence of the specific contact resistance.

  • PDF

Changes in Interface Properties of TCO/a-Si:H Layer by Zn Buffer Layer in Silicon Heterojunction Solar Cells (실리콘 이종접합 태양전지의 Zn 확산방지층에 의한 TCO/a-Si:H 층간의 계면특성 변화)

  • Tark, Sung-Ju;Son, Chang-Sik;Kim, Dong-Hwan
    • Korean Journal of Materials Research
    • /
    • v.21 no.6
    • /
    • pp.341-346
    • /
    • 2011
  • In this study, we inserted a Zn buffer layer into a AZO/p-type a-si:H layer interface in order to lower the contact resistance of the interface. For the Zn layer, the deposition was conducted at 5 nm, 7 nm and 10 nm using the rf-magnetron sputtering method. The results were compared to that of the AZO film to discuss the possibility of the Zn layer being used as a transparent conductive oxide thin film for application in the silicon heterojunction solar cell. We used the rf-magnetron sputtering method to fabricate Al 2 wt.% of Al-doped ZnO (AZO) film as a transparent conductive oxide (TCO). We analyzed the electro-optical properties of the ZnO as well as the interface properties of the AZO/p-type a-Si:H layer. After inserting a buffer layer into the AZO/p-type a-Si:H layers to enhance the interface properties, we measured the contact resistance of the layers using a CTLM (circular transmission line model) pattern, the depth profile of the layers using AES (auger electron spectroscopy), and the changes in the properties of the AZO thin film through heat treatment. We investigated the effects of the interface properties of the AZO/p-type a-Si:H layer on the characteristics of silicon heterojunction solar cells and the way to improve the interface properties. When depositing AZO thin film on a-Si layer, oxygen atoms are diffused from the AZO thin film towards the a-Si layer. Thus, the characteristics of the solar cells deteriorate due to the created oxide film. While a diffusion of Zn occurs toward the a-Si in the case of AZO used as TCO, the diffusion of In occurs toward a-Si in the case of ITO used as TCO.

Effect of Ground Confine Pressure on Pullout Resistance of Piles Using Model Experiment (말뚝의 인발저항에 대한 지중 구속압 영향 분석을 위한 실내모형실험)

  • Seung-Kyong You;Gigwon Hong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.4
    • /
    • pp.27-34
    • /
    • 2023
  • This paper describes the results of a pile pullout test considering the confine pressure and fines content of the ground. The Pullout tests were conducted under various ground conditions using model piles. The effect of ground confine pressure on the pullout resistance and the pullout resistance parameters of the pile were evaluated based on the experimental results. The results of pullout test showed that the maximum pullout resistance occurred at a pullout displacement of about 7mm to 9mm, regardless of the fines content and the confine pressure of the ground. The maximum pullout resistance of the pile decreased as the fines content of the ground increased, and this trend became clearer as the confine pressure increased. The pullout resistance calculated by theoretical formula was compared with the experimental results in order to ensure the reliability of the pullout test results. The comparative results showed that the experimental and theoretical values showed a tendency to decrease the pullout resistance as the fines content increased, in all confine pressure conditions. The analysis result of the pullout resistance parameters confirmed that the pullout resistance was greatly influenced by the adhesion compared to the interface friction angle, as the fines content of the ground around the pile increased.

Surface Characteristics of Dental Implant Fixture with Various Manufacturing Process (치과 임플란트 고정체의 여러 가지 제조공정과정에 따른 표면특성)

  • Jeong, Yong-Hoon;Moon, Young-Pil;Lee, Chung-Hwan;Yu, Jin-Woo;Choe, Han-Cheol
    • Journal of the Korean institute of surface engineering
    • /
    • v.43 no.1
    • /
    • pp.17-24
    • /
    • 2010
  • In this study, surface characteristics of dental implant fixture with various manufacturing process have been researched using electrochemical methods. The dental implant fixture was selected with 5 steps by cleaning, surface treatment and sterilization with same size and screw structure; the 1st step-machined surface, 2nd step-cleaned by thinner and prosol solution, 3th step-surface treated by RBM (resorbable blasting media) method, 4th step-cleaned and dried, 5th step-sterilized by gamma-ray. The electrochemical behavior of dental implant fixture has been evaluated by using potentiostat (EG&G Co, 2273A) in 0.9% NaCl solution at $36.5{\pm}1^{\circ}C$. The corrosion surface was observed using field-emission scanning electron microscopy (FE-SEM) and energy dispersive x-ray spectroscopy (EDS). The step 5 sample showed the cleaner and rougher surface than step 3 sample. The step 5 sample of implant fixture treated by RBM and gamma sterilization showed the low corrosion current density compared to others. Especially, the step 3 sample of implant fixture treated by RBM was presented the lowest value of corrosion resistance and the highest value of corrosion current density. The step 3 sample showed the low value of polarization resistance compared to other samples. In conclusion, the implant fixture treated with RBM and gamma sterilization has the higher corrosion resistance, and corrosion resistance depends on the step of manufacturing process.

FE Analysis of Rock-Socketed Drilled Shafts Using Load Transfer Method (유한요소해석을 통한 암반에 근입된 현장타설말뚝의 하중전이거동 분석)

  • Seol, Hoon-Il;Jeong, Sang-Seom;Kim, Young-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.12
    • /
    • pp.33-40
    • /
    • 2008
  • The load distribution and deformation of rock-socketed drilled shafts subjected to axial loads are evaluated by a load-transfer method. The emphasis is on quantifying the effect of coupled soil resistance in rock-socketed drilled shafts using the 2D elasto-plastic finite element analysis. Slippage and shear load transfer behavior at the pile-soil interface are investigated by using a user-subroutine interface model (FRlC). It is shown that the coupled soil resistance provides the influence of pile toe settlement as the shaft resistance is increased to an ultimate limit state. The results show that the coupling effect is closely related to the value of pile diameter over rock mass modulus (D/$E_{mass}$) and the ratio of total shaft resistance against total applied load ($R_s$/Q). Through comparisons with field case studies, the 2D numerical analysis reseanably presented load transfer of pile and coupling effect due to the transfer of shaft shear loading, and thus represents a significant improvement in the prediction of load deflections of drilled shafts.

A Study on the skin friction characteristics of SIP and the estimation of the nonlinear numerical modelling equation (SIP말뚝의 주면마찰특성 및 비선형 수치모델식 산정에 관한 연구)

  • 천병식;임해식;김도형
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.153-160
    • /
    • 2003
  • While the interests on the environmental problem during the construction are increasing, the use of low noise-vibration auger-drilled pilling is increasing to solve noise and vibration problem in pilling. Therefore, in Korea, SIP(Soil-Cement Injected Precast Pile) method is mainly used as auger-drilled pilling. However, there is no proper design criteria compatible with the ground condition of Korea, so which is most wanted. To improve and supplement this situation, direct shear tests between SIP pile skin interface and soil were executed on various conditions. Through the analysis of test results, skin resistance characteristics of SIP were investigated thoroughly. Also, the nonlinear unit skin resistance capacity model with SM, SC soil were suggested.

  • PDF

Effects of Slip for Interface on Behavior and Capacity in Hybrid Structure (합성구조체의 경계면 슬립이 거동과 성능에 미치는 영향)

  • 정연주;정광회;김병석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.385-390
    • /
    • 2001
  • This paper presents a nonlinear analysis technique with slip, the effects of slip modulus and composite action by shear connector on behavior and capacity in composite structure of sandwich system. As a results of this study, it proved that the slip modulus, in case of shear behavior, seldom influence load-resistance capacity such as yield and ultimate load, but in case of flexural behavior, it appropriately influence load-resistance capacity because of stress redistribution by slip. In case of flexural behavior, analysis result for perfect-composite results in over-estimation and perfect-slip results in under-estimation on behavior and capacity. Therefore, it is desirable to model steel-concrete interface with partial-composite. The effects of slip on behavior and capacity are less in case of positive composite than loosely composite, and it proved that composite action by shear connector improve the load-resistance capacity of this system.

  • PDF