• 제목/요약/키워드: Interface debonding

검색결과 140건 처리시간 0.024초

전기해체 접착제 (A review on electrically debonding Adhesives)

  • 정종구
    • 접착 및 계면
    • /
    • 제19권2호
    • /
    • pp.84-94
    • /
    • 2018
  • Electrically debonding adhesives[EDA], one of the controlled delamination materials[CDM] is reviewed. CDM can be defined as the ability to separate adhesive bonded assemblies without causing damage to the substrates. Its application includes electronics, medical surgery, dentistry, building and general manufacturing where the opportunity to separate assemblies is important. There are several important mechanisms of EDAs; faradaic reaction, phase separation and anode detachment, cathodic debonding, gas emission mechanism, and mechanical stresses. These mechanisms are reviewed with various research results. Since the mechanism behind the electrochemical debonding of adhesives is not well understood, this review aims to help the research scientists in the industries. Finally, new applications of EDA are introduced as new business opportunity.

초음파 위상 반전에 의한 FRP/고무 접착계면의 미접착 결함 검출 연구 (Debonding Detection Techniques of FRP/Rubber Interface by the Ultrasonic Phase Reversal)

  • 김동륜;정상기;이상우
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2006년도 제26회 춘계학술대회논문집
    • /
    • pp.11-16
    • /
    • 2006
  • 본 연구는 이종 접착 재질의 접착계면에서 미접착 결함을 검출하기 위한 새로운 시험 기법을 개발하기 위함이다. 접착계면과 미접착계면에서의 초음파 전달 현상을 이론적으로 해석하여 초음파 신호를 모델링하였고, 이론적 분석에 기초하여 미접착계면에서의 위상 반전 현상을 애용한 검사 방법을 FRP/고무 시편에 적용하였다. 정량적으로 결함의 최소 검출 능력을 평가하기 위하여 알루미늄/고무 시편에 평저공을 가공하여 제작하였고 일반적으로 사용하고 있는 펄스에코반사법과 새로운 시험 기법인 위상반전법을 상호 비교하였으며 이론적으로 예측한 초음파 신호와 실험에서 얻은 초음파 신호를 근거로 위상반전법으로 미접착 결함을 검출할 수 있다고 판단하였다.

  • PDF

초음파 위상 반전에 의한 FRP/고무 접착 계면의 미접착 결함 검출 연구 (A Debonding Detection Technique for FRP/Rubber Interface by Ultrasonic Phase Reversal)

  • 김동륜;임수용;정상기
    • 한국추진공학회지
    • /
    • 제13권2호
    • /
    • pp.9-16
    • /
    • 2009
  • 본 연구는 이종 접착 재질의 접착 계면에서 미접착 결함을 검출하기 위한 새로운 시험 기법을 개발하기 위함이다. 접착 계면과 미접착 계면에서의 초음파 전달 현상을 이론적으로 해석하여 초음파 신호를 모델링하였고, 이론적 분석에 기초하여 미접착 계면에서의 위상 반전 현상을 이용한 검사 방법을 FRP/고무 시편에 적용하였다. 정량적으로 결함의 최소 검출 능력을 평가하기 위하여 알루미늄/고무시편에 평저공을 가공하여 제작하였고 일반적으로 사용하고 있는 펄스에코반사법과 새로운 시험 기법인 위상반전법을 상호 비교하였으며 이론적으로 예측한 초음파 신호와 실험에서 얻은 초음파 신호를 근거로 위상반전법으로 미접착 결함을 검출할 수 있다고 판단하였다.

Anchor Design to Prevent Debonding of Repair Mortar in Repaired Concrete Members

  • 최동욱;이진용
    • 콘크리트학회논문집
    • /
    • 제17권4호
    • /
    • pp.637-643
    • /
    • 2005
  • Reinforced concrete beams or slabs are often strengthened or repaired using polymer modified cement concrete Stresses can develop in the structure by ambient temperature changes because thermal coefficients of the repair material and the existing concrete are typically different. Especially, shear stress often causes debonding of the interface. In this study, a rational procedure was developed where anchors can be designed in strengthened or repaired concrete members to prevent debonding at the interface. The current design procedure considers thicknesses and elastic moduli of the repair material and existing concrete, ambient temperature change, length, and beam-vs.-slab action. The procedure is also applicable to stresses developed by differential drying shrinkage.

시멘트-대퇴Stem 경계면 해리가 골-시멘트 경계면에 미치는 응력 분석 -3차원 비선형 Finite Element Analysis- (Stress analysis of the effect of debonding of cement-femoral stem interface to the bone-cement interface -A three-dimensional Finite Element Analysis-)

  • 김성곤
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1996년도 추계학술대회
    • /
    • pp.337-346
    • /
    • 1996
  • Debonding of cement-femoral stem interface has been suggested as a initial focus of loosening mechanism in many previous studies of cemented total hip replacement. The purpose of this study was to investigate the effect of debonding of cement-femoral stem interface to the bone-cement interface by using three-dimensional non-liner finite element analysis. Three cases of partial debonded, full debonded, full bonded cement-bone interface were modelled with partial bonding of distal 70mm from the tip of femoral stem. Each situation was studied under loading stimulating one-leg stanced gait of 68kg patient. The results showed that under partial and full debonded cement-stem interface condition the peak von Mises stress(3.1 MPa) were observed at the cement of bone-cement interface just under the calcar of proximal medial of femur, and sudden high peak stresses(3.5MPa) were developed at the distal tip of femoral stem at the lateral bone-cement interface in all 3 cases of bonding. The stresses were transfered very little to the cement of upper lateral bone-cement interface in partial and full debonded cases. Thus, once partial or full debonded cement-femoral stem interface occured, 3 times higher stress concentration were developed on the cement of proximal medial bone-cement interface than full bonded interface, and these could cause loosening of cemented total hip replacement. Clinically, preservation of more rigid cement-femoral stem interface may be important factor to prevent loosening of femoral stem.

  • PDF

탄소섬유시트 보강 철근콘크리트보의 계면박리에 관한 연구 (Interface Debonding of Reinforced Concrete Beams Strengthened with Carbon Fiber Sheets)

  • 박주현;이우철;정진환;조백순
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.355-358
    • /
    • 2003
  • The strengthening method with CFS(Carbon Fiber Sheet) to reinforced concrete structures has a fatal defect. Strengthened beams have been almost failed far below their ultimate strength due to interface debonding failure between the surface of concrete and CFS. The purpose of this study is to investigate the failure mechanism and failure behavior of strengthened RC beam using CFS.

  • PDF

Improved Modeling of the Effects of Thermal Residual Stresses on Single Fiber Pull-Out Problem

  • Chai, Young-Suk;Park, Byung-Sun;Yang, Kyung-Jun
    • Journal of Mechanical Science and Technology
    • /
    • 제15권7호
    • /
    • pp.823-830
    • /
    • 2001
  • The single fiber pull-out technique has been commonly used to characterize the mechanical behavior of fiber/matrix interface in fiber reinforced composite materials. In this study, an improved analysis considering the effect of thermal residual stresses in both radial and axial directions is developed for the single fiber pull-out test. It is found to have the pronounced effects on the stress transfer properties across the interface and the interfacial debonding behavior.

  • PDF

응집영역모델을 이용한 정수압 성형 해석시 고무몰드의 변형거동 (Deformation of the Rubber Mold by Using the Cohesive Zone Model Under Cold Isostatic Pressing)

  • 이성철;김기태
    • 대한기계학회논문집A
    • /
    • 제32권5호
    • /
    • pp.387-395
    • /
    • 2008
  • Stress distribution and interfacial debonding process at the interface between a rubber mold and a powder compact were analyzed during unloading under cold isostatic pressing. The Cap model proposed by Lee and Kim was used for densification behavior of powder based on the parameters involved in the yield function of general Cap model and volumetric strain evolution. Cohesive elements incorporating a bilinear cohesive zone model were also used to simulate interfacial debonding process. The Cap model and the cohesive zone model were implemented into a finite element program (ABAQUS). Densification behavior of powder was investigated under various interface conditions between a rubber mold and a powder compact during loading. The residual tensile stress at the interface was investigated for rubber molds with various elastic moduli under perfect bonding condition. The variations of the elastic energy density of a rubber mold and the maximum principal stress of a powder compact were calculated for several interfacial strengths at the interface during unloading.

Mechanical behaviour between adjacent cracks in CFRP plate reinforced RC slabs

  • Yuan, Xin;Bai, Hongyu;Sun, Chen;Li, Qinqing;Song, Yanfeng
    • Structural Engineering and Mechanics
    • /
    • 제84권3호
    • /
    • pp.375-391
    • /
    • 2022
  • This paper discussed and analyzed the interfacial stress distribution characteristic of adjacent cracks in Carbon Fiber Reinforced Polymer (CFRP) plate strengthened concrete slabs. One un-strengthened concrete test beam and four CFRP plate-strengthened concrete test beams were designed to carry out four-point flexural tests. The test data shows that the interfacial shear stress between the interface of CFRP plate and concrete can effectively reduce the crack shrinkage of the tensile concrete and reduces the width of crack. The maximum main crack flexural height in pure bending section of the strengthened specimen is smaller than that of the un-strengthened specimen, the CFRP plate improves the rigidity of specimens without brittle failure. The average ultimate bearing capacity of the CFRP-strengthened specimens was increased by 64.3% compared to that without CFRP-strengthen. This indicites that CFRP enhancement measures can effectively improve the ultimate bearing capacity and delay the occurrence of debonding damage. Based on the derivation of mechanical analysis model, the calculation formula of interfacial shear stress between adjacent cracks is proposed. The distributions characteristics of interfacial shear stress between certain crack widths were given. In the intermediate cracking region of pure bending sections, the length of the interfacial softening near the mid-span cracking position gradually increases as the load increases. The CFRP-concrete interface debonding capacity with the larger adjacent crack spacing is lower than that with the smaller adjacent crack spacing. The theoretical calculation results of interfacial bonding shear stress between adjacent cracks have good agreement with the experimental results. The interfacial debonding failure between adjacent cracks in the intermediate cracking region was mainly caused by the root of the main crack. The larger the spacing between adjacent cracks exists, the easier the interfacial debonding failure occurs.