Stress analysis of the effect of debonding of cement-femoral stem interface to the bone-cement interface -A three-dimensional Finite Element Analysis-

시멘트-대퇴Stem 경계면 해리가 골-시멘트 경계면에 미치는 응력 분석 -3차원 비선형 Finite Element Analysis-

  • Kim, S.K. (Department of Orthopaedic Surgery, Guro Hospital, Korea University College of Medicine)
  • 김성곤 (고려대학교 의과대학 정형외과학 교실)
  • Published : 1996.11.15

Abstract

Debonding of cement-femoral stem interface has been suggested as a initial focus of loosening mechanism in many previous studies of cemented total hip replacement. The purpose of this study was to investigate the effect of debonding of cement-femoral stem interface to the bone-cement interface by using three-dimensional non-liner finite element analysis. Three cases of partial debonded, full debonded, full bonded cement-bone interface were modelled with partial bonding of distal 70mm from the tip of femoral stem. Each situation was studied under loading stimulating one-leg stanced gait of 68kg patient. The results showed that under partial and full debonded cement-stem interface condition the peak von Mises stress(3.1 MPa) were observed at the cement of bone-cement interface just under the calcar of proximal medial of femur, and sudden high peak stresses(3.5MPa) were developed at the distal tip of femoral stem at the lateral bone-cement interface in all 3 cases of bonding. The stresses were transfered very little to the cement of upper lateral bone-cement interface in partial and full debonded cases. Thus, once partial or full debonded cement-femoral stem interface occured, 3 times higher stress concentration were developed on the cement of proximal medial bone-cement interface than full bonded interface, and these could cause loosening of cemented total hip replacement. Clinically, preservation of more rigid cement-femoral stem interface may be important factor to prevent loosening of femoral stem.

Keywords