• Title/Summary/Keyword: Interface Assessment

Search Result 327, Processing Time 0.031 seconds

A Study on the Curvature Characteristic of the Incomplete Composite Girder Considering the Deflection Effect (처짐을 고려한 불완전합성형의 곡률특성에 관한 연구)

  • Yong, Hwan Sun;Kim, Yun Hwan;Park, Yong Chan;Song, Su Yeop
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.6
    • /
    • pp.803-811
    • /
    • 2002
  • Current composite steel and concrete bridges are designed using full-interaction theory assuming there is no relative slip, between the steel and concrete components along their interface, because of the complexities of partial-interaction analysis techniques. However, in the assessment of existing composite bridges this simplification may not be warranted as it is often necesary to extract the correct capacity and endurance from the structure. This may only be achieved using partial-interaction theory which tuly reflects the behaviour of the structure. In this paper, Parametric analyses have been carried out in order to confirm the partial-interaction curvatures with deflection effect using the finite element method. Therefore, the model is considered for simply supported steel and concrete composite bridges with a uniform distribution of connectors subjected to a single concentrated load. For the case studies, this study applicate a parameters such as the number and space of stud shear connector and elastic modulus of concrete slabs. From this study, it is known that partial-interaction effect was in the increase to the increasing the deflection of composite bridges, and stiffness and strength of slab concrete considering the occurrence of crack effect seriously to the partial-interaction behavior.

Development of Hydrologic Components of CAT (Catchment hydrologic cycle Assessment Tool) (CAT 모형의 수문해석모듈 개발)

  • Noh, Seong-Jin;Kim, Hyeon-Jun;Jang, Cheol-Hee;Lee, Yong-Jun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.159-163
    • /
    • 2009
  • CAT(Catchment hydrologic cycle Analysis Tool)은 기존 개념적 매개변수 기반의 집중형 수문모형과 물리적 매개변수 기반의 분포형 수문모형의 장점을 최대한 집약하여, 도시유역 개발 전 후의 장 단기적인 물순환 변화 특성을 정량적으로 평가하고 물순환개선시설의 효과적인 설계를 지원하기 위한 물순환 해석 모형이다. CAT은 수문학적으로 균일하게 판단되는 범위를 소유역으로 분할하여 지형학적 요인에 의한 유출 특성을 객관적으로 반영할 수 있으며, 개발 공간 단위별로 침투, 증발, 지하수 흐름 등의 모의가 가능하도록 하는 Link-Node 형식으로 개발되었다. 모형의 UI(User Interface)는 사용자가 손쉽게 모형을 적용 관리하고, 여러 시나리오를 동시에 효과적으로 모의하여 분석할 수 있도록 설계되었다. 또한 모든 입력 출력 자료를 Excel이나 텍스트 형식과 연동되도록 하여 프로젝트별 매개변수 관리가 용이하도록 개발하였다. CAT의 수문해석모듈로 증발산, 침투, 유역 유출, 지하수 유거, 하도추적 등의 모듈을 개발하였다. 증발산은 기준 증발산을 외부에서 직접 입력하거나, Penman-Monteith 방법을 선택할 수 있으며, 침투는 토양의 수리전도도에 따른 연직방향 침투 및 사면방향 복귀류를 고려할 수 있다. 노드의 지하수 유거를 고려하여 기존 노드-링크 방식 모형의 장기 유출 해석시 제한점을 보완하였으며, 하도추적을 위해 Muskingum, Muskingum-Cunge, Kinematic wave 방법 등의 해석법을 제공하였다. CAT의 수문모듈을 이용하여 설마천 유역을 단일노드 및 멀티노드로 개념화하여 모의하였으며, 모의결과를 관측유량과 비교한 결과, 두 경우 적절한 범위내의 결과임을 확인할 수 있었다. CAT의 안정적인 수문해석 기능을 바탕으로 향후 물순환개선시설 모듈과의 결합을 통해 장기 물순환 해석에 광범위하게 활용될 수 있을 것으로 판단된다.

  • PDF

Development of an Auto ABLB Test Software (자동 ABLB 검사 소프트웨어 개발)

  • Kang, Deok-Hun;Kim, Jin-Dong;Song, Bok-Deuk;Shin, Bum-Joo;Wang, Soo-Geun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.12
    • /
    • pp.5120-5126
    • /
    • 2010
  • ABLB(Alternate Binaural Loudness Balance) test is one of the medical assessments to diagnose detailed lesion of sensory-neural hearing loss based on a recruitment phenomenon. This paper describes an Auto ABLB test software. This software automatically decides test frequency and intensity of first test tone. And it supports an automatic algorithm that analyses the subject's reponses in the current step and then decides intensity of tone provided in next step. Also, this software supports an interface to control and monitor subject's ABLB test. The assessment result is represented by a ladder diagram. The output of this software has been verified using a digital oscilloscope.

Winkler Springs (p-y curves) for pile design from stress-strain of soils: FE assessment of scaling coefficients using the Mobilized Strength Design concept

  • Bouzid, Dj. Amar;Bhattacharya, S.;Dash, S.R.
    • Geomechanics and Engineering
    • /
    • v.5 no.5
    • /
    • pp.379-399
    • /
    • 2013
  • In practice, analysis of laterally loaded piles is carried out using beams on non-linear Winkler springs model (often known as p-y method) due to its simplicity, low computational cost and the ability to model layered soils. In this approach, soil-pile interaction along the depth is characterized by a set of discrete non-linear springs represented by p-y curves where p is the pressure on the soil that causes a relative deformation of y. p-y curves are usually constructed based on semi-empirical correlations. In order to construct API/DNV proposed p-y curve for clay, one needs two values from the monotonic stress-strain test results i.e., undrained strength ($s_u$) and the strain at 50% yield stress (${\varepsilon}_{50}$). This approach may ignore various features for a particular soil which may lead to un-conservative or over-conservative design as not all the data points in the stress-strain relation are used. However, with the increasing ability to simulate soil-structure interaction problems using highly developed computers, the trend has shifted towards a more theoretically sound basis. In this paper, principles of Mobilized Strength Design (MSD) concept is used to construct a continuous p-y curves from experimentally obtained stress-strain relationship of the soil. In the method, the stress-strain graph is scaled by two coefficient $N_C$ (for stress) and $M_C$ (for strain) to obtain the p-y curves. $M_C$ and $N_C$ are derived based on Semi-Analytical Finite Element approach exploiting the axial symmetry where a pile is modelled as a series of embedded discs. An example is considered to show the application of the methodology.

Development and Assessment of Multi-sensory Effector System to Improve the Realistic of Virtual Underwater Simulation (가상 해저 시뮬레이션의 현실감 향상을 위한 다감각 효과 재현 시스템 개발 및 평가)

  • Kim, Cheol-Min;Youn, Jae-Hong;Kang, Im-Chul;Kim, Byung-Ki
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.1
    • /
    • pp.104-112
    • /
    • 2014
  • With recent development of virtual reality technology, coupled with the growth of the marine industry, virtual underwater simulation systems are under development in various studies, for educational purposes and to simulate virtual reality experiences. Current literature indicates many underwater simulation systems to date have focused on the quality of visual stimulus delivered through three-dimensional graphics user interface, limiting the reality of the experience. In order to improve the quality of the reality delivered by such virtual simulations, it is crucial to develop multi-sensory technology rather than focus on the conventional audio-visual interaction, which limits experiencer from the sense of underwater immersion and existence within the simulation. This work proposes the immersive multi-sensory effector system, delivering the users with a more realistic underwater experience. The sense of reality perceived was evaluated, as the main factor of the virtual reality system.

Histomorphometric evaluation of the implant designed by shape optimization technique (성견 경골에서 최적화 기법을 이용하여 형상 개선된 임프란트의 조직계측학적 분석)

  • Kwon, Hyuk-Rak;Moon, Sang-Kwon;Shim, Joon-sung;Ahn, Sei-young;Lee, Hun;Kim, Han-Sung;Choi, Seong-ho;Kim, Chong-Kwan
    • Journal of Periodontal and Implant Science
    • /
    • v.34 no.1
    • /
    • pp.35-48
    • /
    • 2004
  • Since the occlusal loading is transmitted to the surrounding bone, the success of an implant treatment is closely related to the distribution of the stress on the implant. The finite element analysis method is often used in order to produce a model for dispersion of stress. Assessment of the success of the implant is usually based on the degree of osseointegration which is a bone and implant surface interface. Implant used in this research was designed through the method of shape optimization after the stress on implant was anaylzed by the finite element analysis method. This study was pertinently assessed by a clinical, histologic, histomorphometric analysis after the shape optimized implant was installed on beagle dog tibia. The results are as follows 1. It clinically showed a good result without mobility and imflammatory reaction. 2. Implant was supported by dense bone and bone remodeling showed on the surrounding area of the implant 3. The average percentage of bone-implant contact was 58.1%.The percentage of bone density was 57.6%. Having above results, shape optimized implant showed the pertinence through clinical and histologic aspects. However, to use the shape optimized implant, the further experiment is required for finding problems, improvement.

Evaluation of Seismic Damage for RC Bridge Piers I : Theory and Formulation (철근콘크리트 교각의 지진손상 평가 I : 이론 및 정식화)

  • 김태훈;김운학;신현목
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.3
    • /
    • pp.31-40
    • /
    • 2002
  • The purpose of this study is to investigate the seismic behavior of RC bridge piers and to provide the data for developing improved seismic design criteria. The accuracy and objectivity of the assessment process may be enhanced by the use of sophisticated nonlinear finite element analysis program. A computer program, named RCAHEST(reinforced concrete analysis in higher evaluation system technology), for the analysis of reinforced concrete structures was used. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. The smeared crack approach is incorporated. n boundary plane at which each member with different thickness is connected, local discontinuity in deformation due to the abrupt change in their stiffness can be taken into account by introducing interface element. The effect of number of load reversals with the same displacement amplitude has been also taken into account to model the reinforcing steel and concrete. In the companion paper, the proposed numerical method for seismic damage evaluation of RC bridge piers is verified by comparison with the reliable experimental results.

Numerical Study on the Optimal Shape of Concrete Plug for Compressed Air Energy Storage Caverns (압축공기에너지 저장 공동의 콘크리트 플러그 최적 형상에 대한 수치해석적 연구)

  • Park, Doh-Hun;Kim, Hyung-Mok;Ryu, Dong-Woo;Synn, Joong-Ho;Song, Won-Kyong
    • Tunnel and Underground Space
    • /
    • v.21 no.3
    • /
    • pp.164-173
    • /
    • 2011
  • In the present study, the stability of a compressed air energy storage cavern was numerically assessed by concrete plug shapes in order to investigate the optimal shape of concrete plug. The concrete plugs were cylindrical, embedded cylindrical, tapered, and wedged in shape. The stability assessment was carried out based on factor of safety through a strength reduction method and a volume ratio which refers to the ratio of the volume of yield regions in concrete induced by internal pressure to all concrete volume. The results from the present study indicated that the embedded cylindrical and taper shaped plugs were mechanically more stable than the cylindrical and wedge shaped plugs. However, from a comparison of stress distributions in rock mass between the embedded cylindrical and taper shaped plugs, the taper shaped plug was found to be more optimal than the embedded cylindrical plug, since the embedded cylindrical plug caused more stress concentration in the interface between the plug and rock mass than the taper shaped plug.

A Design Study of Standard Indicators for Evaluating the Technical Performance of an NCS Core Vocational Competence System (직업기초능력 평가시스템의 기술성능 평가를 위한 표준지표 설계 연구)

  • Kim, Seung-Hee;Chang, Young-Hyeon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.5
    • /
    • pp.111-117
    • /
    • 2017
  • The National Competency Standards (NCS) was designed to implement a competence-based society and solve the problem of inconsistency between the industrial field and education, training, and certification system. This study designed and developed the Korean NCS core vocational competence system, in accordance with the NCS, as an infrastructure to solve fundamental problems such as re-education and the social costs that are incurred in the workplace. Further, this study designed and developed standard indicators to evaluate the technical performance of the system for the global advancement of the Korean NCS core vocational competence system. The NCS core vocational competence system has been developed as an appropriate response type for multiple devices such as computers, tablet PCs, and cellular phones. For the global advancement of the Korean NCS core vocational competence system, this study designed and developed 10 performance evaluation indicators in accordance with 10 global standards, such as linkage-target operating system, interface protocol, packet format, encryption, class component, simultaneous access number, supervisor-to-testtaker response speed, server-to-admin response speed, auto-recovery speed for test answers, and real-time answer transmission speed.

Damage Assessment of Curved Composite Laminate Structures Subjected to Low-Velocity Impact (곡률을 가진 적층복합재 구조에서의 저속충격손상 평가)

  • 전정규;권오양;이우식
    • Composites Research
    • /
    • v.14 no.2
    • /
    • pp.22-32
    • /
    • 2001
  • Damage induced by low-velocity impact on the curved composite laminates was experimentally evaluated for CFRP cylindrical shells with the radius of curvatures of 50, 150, 300, and 500 mm. The result was then compared with that of flat laminates and with the results by nonlinear finite-element analysis. The radius of curvatures and the effective shell stiffness appeared to considerably affect the dynamic impact response of curved shells. Under the same impact energy level, the maximum contact force increased with the decreasing radius of curvatures, with reaching 1.5 times that for plates at the radius of curvature of 50 mm. Since the maximum contact farce is directly related to the impact damage, curved laminates can be more susceptible to delamination and less resistant to the low-velocity impact damage. Delamination was distributed rather evenly at each interface along the thickness direction of curved laminates on the contrary to the case of flat laminates, where delamination is typically concentrated at the interfaces away from the impact point. This implies that the effect of curvatures has to be considered for the design of a curved composite laminate.

  • PDF