DOI QR코드

DOI QR Code

Evaluation of Seismic Damage for RC Bridge Piers I : Theory and Formulation

철근콘크리트 교각의 지진손상 평가 I : 이론 및 정식화

  • 김태훈 (성균관대학교 토목환경공학과, 박사과정 수료) ;
  • 김운학 (국립한경대학교 토목공학과) ;
  • 신현목 (성균관대학교 토목환경공학과)
  • Published : 2002.06.01

Abstract

The purpose of this study is to investigate the seismic behavior of RC bridge piers and to provide the data for developing improved seismic design criteria. The accuracy and objectivity of the assessment process may be enhanced by the use of sophisticated nonlinear finite element analysis program. A computer program, named RCAHEST(reinforced concrete analysis in higher evaluation system technology), for the analysis of reinforced concrete structures was used. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. The smeared crack approach is incorporated. n boundary plane at which each member with different thickness is connected, local discontinuity in deformation due to the abrupt change in their stiffness can be taken into account by introducing interface element. The effect of number of load reversals with the same displacement amplitude has been also taken into account to model the reinforcing steel and concrete. In the companion paper, the proposed numerical method for seismic damage evaluation of RC bridge piers is verified by comparison with the reliable experimental results.

이 연구는 철근콘크리트 교각의 지진응답을 파악하고 합리적이면서 경제적인 내진설계기준의 개발을 위한 자료를 제공하는데 그 목적이 있다. 정확하고 올바른 지진손상 평가를 위하여 비선형 유한요소해석 프로그램을 사용하였다. 사용된 프로그램은 철근콘크리트 구조물의 해석을 위한 RCAHEST이다. 재료적 비선형성에 대해서는 균열콘크리트에 대한 인장, 압축, 전단모델과 콘크리트 속에 있는 철근모델을 조합하여 고려하였다. 이에 대한 콘크리트의 균열모델로서는 분산균열모델을 사용하였다. 두께가 서로 다른 부재간의 접합부에서 단면강성이 급변하기 때문에 생기는 국소적인 불연속변형을 고려하기 위한 경계면요소를 도입하였다. 또한, 같은 변위진폭에 있어서의 하중재하 회수에 의한 효과를 고려하였다. 연계논문에서는 철근콘크리트 교각의 지진손상 평가를 위해 제안한 해석기법을 신뢰성 있는 연구자의 실험결과와 비교하여 그 타당성을 검증하였다.

Keywords

References

  1. 김태훈, 김운학, 신현목, “철근콘크리트 교각의 지진손상 평가 II: 수치해석 예”, 한국지진공학회 논문집, 제6권, 제3호, 2002, pp. 41-52. https://doi.org/10.5000/EESK.2002.6.3.041
  2. ATC, “Seismic evaluation and retrofit of concrete buildings,” ATC-40 Report, Applied Technology Council, Redwood City, California, 1996.
  3. 김태훈, 신현목, “Analytical approach to evaluate the inelastic behaviors of reinforced concrete structures under seismic loads,” 한국지진공학회 논문집, 제5권, 제2호, 2001, pp. 113-124.
  4. Rodriguez-Gomez, S. and Cakmak, A. S., “Evaluation of seismic damage indices for reinforced concrete structures,” Report No. NCEER 90-0022, National Center for Earthquake Engineering Research, State University of New York at Buffalo, 1990.
  5. Roufaiel, M. S. L. and Meyer, C., “Analytical modeling of hysteretic behaviour of R/C frames,” Journal of Structural Engineering, ASCE, Vol. 113, No. 3, 1987, pp. 429-444. https://doi.org/10.1061/(ASCE)0733-9445(1987)113:3(429)
  6. Chung, Y. S., Meyer, C., and Shinozuka, M., “Modeling of concrete damage,” ACI Structural Journal, Vol. 86, No. 3, 1989, pp. 259-271.
  7. Kratzig, W. B., Meyer, I. F., and Meskouris, K., “Damage evolution in reinforced concrete members under cyclic loading,” Proceedings of 5th International Conference on Structural Safety and Reliabililty, Vol. II, San Francisco, 1989, pp. 795-802.
  8. Park, Y. J., Ang, A. H. S., and Wen, Y. K., “Damagelimiting aseismic design of buildings,” Earthquake Spectra, Vol. 3, No. 1, 1987, pp. 1-26. https://doi.org/10.1193/1.1585416
  9. Stone, W. C., and Talyor, A. W., “Seismic performance of circular bridge column designed in accordance with AASHTO/CALTRANS standards,” NIST Building Science Series 170, National Institute of Standards and Technology, Gaitherburg, M. D., 1993.
  10. Williams, M. S., Villemure, I., and Sexsmith, R. G., “Evaluation of seismic damage indices for concrete elements loaded in combined shear and flexure,” ACI Structural Journal, Vol. 94, No. 3, 1997, pp. 315-322.
  11. 김태훈, 이상철, 신현목, “비탄성 손상 해석을 이용한 철근콘크리트 교각의 내진성능평가,” 대한토목학회 논문집, 제21권, 제3-A호, 2001, pp. 361-372.
  12. 김태훈, 신현목, “비탄성 유한요소해석을 이용한 주철근 단락을 갖는 철근콘크리트 교각의 손상지수 평가”, 한국지진공학회 논문집, 제5권, 제4호, 2001, pp. 39-49.
  13. Park, Y. J., Ang, A. H. S., and Wen, Y. K., “Seismic damage analysis of reinforced concrete buildings,” Journal of Structural Engineering, ASCE, Vol. 111, No. ST4, 1985, pp. 740-757. https://doi.org/10.1061/(ASCE)0733-9445(1985)111:4(740)
  14. Kratzig, W. B. and Meskouris, M., “Nonlinear seismic analysis of reinforced concrete frames,” Earthquake Prognostics(Vogel and Brandes, editors), Verlag Friedr, Vieweg and Sohn, Braunschweig, 1987, pp. 453-462.
  15. Mander, J. B. and Cheng, C. T., “Renewable hinge detailing for bridge columns,” Pacific Conference on Earthquake Engineering, Melbourne, Australia, 1995. 11, pp. 197-206.
  16. Kunnath, S. K., El-Bahy, A., Taylor, A., and Stone, W., “Cumulative seismic damage of reinforced concrete bridge piers,” Report No. NCEER-97-0006, National Center for Earthquake Engineering Research, State University of New York at Buffalo, 1997.
  17. Hindi, R. A. and Sexsmith, R. G., “A proposed damage model for RC bridge columns under cyclic loading,” Earthquake Spectra, Vol. 17, No. 2, 2001, pp. 261-290. https://doi.org/10.1193/1.1586175
  18. Coffin, L. F., Jr., “A Study of the Effects of Cycle Thermal Stress on a Ductile Metal,” Transactions of the American Society of Mechanical Engineers, Vol. 76, New York, NY, 1954, pp. 931-950.
  19. Manson, S. S., “Behavior of materials under conditions of thermal stress,” Heat Transfer Symposium, Proceedings, University of Michigan Engineering Research Institute, Ann Arbor, MI, 1953, pp. 9-75.
  20. 김태훈, 유영화, 신현목, “지진하중을 받는 철근콘크리트 교각의 비탄성 거동 및 연성능력에 관한 해석적 연구,” 한국지진공학회 논문집, 제4권, 제4호, 2000, pp. 37-51.
  21. 김태훈, 신현목, “지진시 철근콘크리트 기둥-기초 접합부의 불연속 변위에 관한 해석적 연구,” 한국콘크리트학회 논문집, 제12권, 제6호, 2000, pp. 83-90.
  22. Mander, J. B., Priestley, M. J. N., and Park. R., “Theoretical stress-strain model for confined concrete,” Journal of Structural Engineering, ASCE, Vol. 114, No. 8, 1988, pp. 1804-1826. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804)
  23. Kent, D. C. and Park, R., "Flexural members with confined concrete," Journal of Structural Engineering, ASCE, Vol. 97, No. 7, 1971, pp. 1969-1990. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:9(2439)
  24. Saatcioglu, M., Alsiwat, J. M., and Ozcebe, G., “Hysteretic behavior of anchorage slip in R/C members,” Journal of Structural Engineering, ASCE, Vol. 118, No. 9, 1992, pp. 2439-2458. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:9(2439)
  25. Mander, J. B., Panthaki, F. D., and Kasalanati, K., “Low-cycle fatigue behavior of reinforcing steel,” Journal of Materials in Civil Engineering, ASCE, Vol. 6, No. 4, 1994, pp. 453-468. https://doi.org/10.1061/(ASCE)0899-1561(1994)6:4(453)
  26. Perera, R., Carnicero, A., Alarcon, E., and Gomez, S., “A fatigue damage model for seismic response of RC structures,” Computers and Structures, Vol. 78, 2000, pp. 293-302. https://doi.org/10.1016/S0045-7949(00)00071-7
  27. Tepfers, R. and Kutti, T., “Fatigue of strength of plain, ordinary, and lightweight concrete,” ACI Journal Proceedings, Vol. 29, No. 76, 1979, pp. 635-653.
  28. Kakuta, Y., Okamura, H., and Kohno, M., “New concepts for concrete fatigue design procedures in Japan,” IABSE Colloquium on Fatigue of Steel and Concrete Structures, Lausanne, 1982, pp. 51-58.
  29. Taylor, R. L., FEAP - A Finite Element Analysis Program, Version 7.2, Users Manual, Vol. 1 - Vol. 2, 2000.
  30. El-Bahy, A., Kunnath, S. K., Stone, W. C., and Taylor, A. W., “Cumulative seismic damage of circular bridge columns: Benchmark and low-cycle fatigue tests,” ACI Structural Journal, Vol. 96, No. 4, 1999, pp. 633-641.
  31. American Association of State Highway and Transportation Officials(AASHTO), Standard Specifications for Highway Bridges, Sixteenth Edition, Washington, D. C., 1996.
  32. 김태훈, 유영화, 신현목, “등가환산단면을 이용한 원형 철근콘크리트 교각의 비탄성 해석”, 대한토목학회 논문집, 제20권, 제5-A호, 2000, pp. 755-763.