• Title/Summary/Keyword: Interaction model

Search Result 5,217, Processing Time 0.031 seconds

The Effect of Multiagent Interaction Strategy on the Performance of Ant Model (개미 모델 성능에서 다중 에이전트 상호작용 전략의 효과)

  • Lee Seung-Gwan
    • The Journal of the Korea Contents Association
    • /
    • v.5 no.3
    • /
    • pp.193-199
    • /
    • 2005
  • One of the important fields for heuristics algorithm is how to balance between Intensificationand Diversification. Ant Colony System(ACS) is a new meta heuristics algorithm to solve hard combinatorial optimization problem. It is a population based approach that uses exploitation of positive feedback as well as greedy search. It was first proposed for tackling the well known Traveling Salesman Problem(TSP). In this paper, we propose Multi Colony Interaction Ant Model that achieves positive negative interaction through elite strategy divided by intensification strategy and diversification strategy to improve the performance of original ACS. And, we apply multi colony interaction ant model by this proposed elite strategy to TSP and compares with original ACS method for the performance.

  • PDF

Practical Numerical Model for Nonlinear Analyses of Wave Propagation and Soil-Structure Interaction in Infinite Poroelastic Media (무한 다공성 매질에서의 비선형 파전파 해석과 지반-구조물 상호작용 해석을 위한 실용적 수치 모형)

  • Lee, Jin Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.7
    • /
    • pp.379-390
    • /
    • 2018
  • In this study, a numerical approach based on mid-point integrated finite elements and a viscous boundary is proposed for time-domain wave-propagation analyses in infinite poroelastic media. The proposed approach is accurate, efficient, and easy to implement in time-domain analyses. In the approach, an infinite domain is truncated at some distance. The truncated domain is represented by mid-point integrated finite elements with real element-lengths and a viscous boundary is attached to the end of the domain. Given that the dynamic behaviors of the proposed model can be expressed in terms of mass, damping, and stiffness matrices only, it can be implemented easily in the displacement-based finite-element formulation. No convolutional operations are required for time-domain calculations because the coefficient matrices are constant. The proposed numerical approach is applied to typical wave-propagation and soil-structure interaction problems. The model is verified to produce accurate and stable results. It is demonstrated that the numerical approach can be applied successfully to nonlinear soil-structure interaction problems.

P-M interaction curve for reinforced concrete columns exposed to elevated temperature

  • Kang, Hyun;Cheon, Na-Rae;Lee, Deuck Hang;Lee, Jungmin;Kim, Kang Su;Kim, Heung-Youl
    • Computers and Concrete
    • /
    • v.19 no.5
    • /
    • pp.537-544
    • /
    • 2017
  • The strength and deformational capacity of slender reinforced concrete (RC) columns greatly rely on their slenderness ratios, while an additional secondary moment (i.e., the $P-{\delta}$ effect) can be induced especially when the RC column members are exposed to fire. To evaluate the fire-resisting performances of RC columns, this study proposed an axial force-flexural moment (i.e., P-M) interaction curve model, which can reflect the fire-induced slenderness effects and the nonlinearity of building materials considering the level of stress and the magnitude of temperature. The P-M interaction model proposed in this study was verified in detail by comparing with the fire test results of RC column specimens reported in literature. The verification results showed that the proposed model can properly evaluate the fire-resisting performances of RC column members.

Effect of Heterogeneous Variance by Sex and Genotypes by Sex Interaction on EBVs of Postweaning Daily Gain of Angus Calves

  • Oikawa, T.;Hammond, K.;Tier, B.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.6
    • /
    • pp.850-853
    • /
    • 1999
  • Angus postweaning daily gain (PWDG) was analyzed to investigate effects of the heterogeneous variance and the genotypes by sex interaction on prediction of EBVs with data sets of various environmental levels. A whole data (16,239 records) was divided into six data sets according to averages of the best linear unbiased estimator (BLUE) of herd environment. The results comparing prediction models showed that single-trait model is adequate for most of the data sets except for the data set of poor environment for both of the bulls and the heifers where the heterogeneity of variance and the genotypes by sex interaction exists. In the prediction with the data set of the low environment level, the bull's EBVs by single-trait models had high product moment correlations with male EBVs of the bulls by the multitrait model. Whereas the heifer's EBVs had moderate correlations with female EBVs by the multitrait model. This moderate correlation seems to be resulted by the heterogeneity of variance and low heritability of the heifer's PWDG. The prediction models with heterogeneity of variance had little effect on the prediction of EBVs for the data sets with moderate to high genetic correlations.

A Study on the Interaction between Hull-Propeller and a High-Lifting Horn-type Rudder (선체-프로펠러와 고양력 혼타의 상호작용에 관한 연구)

  • Kim, Doo-Dong;Lee, Young-Gill
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.4
    • /
    • pp.346-356
    • /
    • 2011
  • Rudder is to be located in extremely complicated flows generated and disturbed behind a hull and a propeller in operation. In order to estimate the rudder efficiency, it is quite important to investigate the disturbed flows due to the interaction under the hull-propeller and rudder condition. The purpose of the present research is to investigate the interaction between the hull-propeller and a high-lifting horn-type rudder through both numerical computations and experiments. A horn-type rudder implementing the Coanda effect of USB (Upper Surface Blowing) type is selected for its high efficiency of lifting force, and a 1/85 scaled model of 47K PC(Product Carrier) is manufactured for the purpose of the model test. The forces acting on the rudder during the experiment are measured using a three-component force gauge. Both cases are investigated in the hull-propeller-rudder condition and rudder open-water condition, which confirms that the flows generated under the former condition is considerably different from that of the latter condition.

Adaptive fluid-structure interaction simulation of large-scale complex liquid containment with two-phase flow

  • Park, Sung-Woo;Cho, Jin-Rae
    • Structural Engineering and Mechanics
    • /
    • v.41 no.4
    • /
    • pp.559-573
    • /
    • 2012
  • An adaptive modeling and simulation technique is introduced for the effective and reliable fluid-structure interaction analysis using MSC/Dytran for large-scale complex pressurized liquid containment. The proposed method is composed of a series of the global rigid sloshing analysis and the locally detailed fluid-structure analysis. The critical time at which the system exhibits the severe liquid sloshing response is sought through the former analysis, while the fluid-structure interaction in the local region of interest at the critical time is analyzed by the latter analysis. Differing from the global coarse model, the local fine model considers not only the complex geometry and flexibility of structure but the effect of internal pressure. The locally detailed FSI problem is solved in terms of multi-material volume fractions and the flow and pressure fields obtained by the global analysis at the critical time are specified as the initial conditions. An in-house program for mapping the global analysis results onto the fine-scale local FSI model is developed. The validity and effectiveness of the proposed method are verified through an illustrative numerical experiment.

Analyzing the Spatial Centrality of Rural Villages for Green-Tourism using GIS and Social Network Analysis -Focusing on Rural Amenity and Human Resources- (GIS 및 사회네트워크 분석을 통한 농촌마을 관광중심성 분석 -농촌어메니티 자원 및 인적자원을 중심으로-)

  • Lee, Sang-Hyun;Choi, Jin-Yong;Bae, Seung-Jong;Oh, Yun-Gyeong
    • Journal of Korean Society of Rural Planning
    • /
    • v.15 no.1
    • /
    • pp.47-59
    • /
    • 2009
  • The aim of this study is to analyze the green-tourism centrality considering spatial interaction using Gravity Model and social network method. The degree centrality and prestige centrality were applied as green-tourism centrality index. The rural amenity resources and human resources were counted as attraction factors, and a distance among villages was used as friction factor in gravity model. The weights of rural tourism amenity resources were calculated using the analytic hierarchy process(AHP) method and applied to evaluate green-tourism potentiality. The distance was measured with the shortest path among villages using geographic information system(GIS) network analysis. The spatial interaction from gravity model were employed as link weights between nodal points; a pair villages. Using the spatial interaction, the degree-centrality and prestige-centrality indices were calculated by social network analysis and demonstrated possibility of developing integrated green-tourism region centered on high centrality villages.

A Theory on Phase Behaviors of Diblock Copolymer/Homopolymer Blends

  • 윤경섭;박형석
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.9
    • /
    • pp.873-885
    • /
    • 1995
  • The local structural and thermodynamical properties of blends A-B/H of a diblock copolymer A-B and a homopolymer H are studied using the polymer reference interaction site model (RISM) integral equation theory with the mean-spherical approximation closure. The random phase approximation (RPA)-like static scattering function is derived and the interaction parameter is obtained to investigate the phase transition behaviors in A-B/H blends effectively. The dependences of the microscopic interaction parameter and the macrophase-microphase separation on temperature, molecular weight, block composition and segment size ratio of the diblock copolymer, density, and concentration of the added homopolymer, are investigated numerically within the framework of Gaussian chain statistics. The numerical calculations of site-site interchain pair correlation functions are performed to see the local structures for the model blends. The calculated phase diagrams for A-B/H blends from the polymer RISM theory are compared with results by the RPA model and transmission electron microscopy (TEM). Our extended formal version shows the different feature from RPA in the microscopic phase separation behavior, but shows the consistency with TEM qualitatively. Scaling relationships of scattering peak, interaction parameter, and temperature at the microphase separation are obtained for the molecular weight of diblock copolymer. They are compared with the recent data by small-angle neutron scattering measurements.

Effect of bidirectional internal flow on fluid.structure interaction dynamics of conveying marine riser model subject to shear current

  • Chen, Zheng-Shou;Kim, Wu-Joan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.1
    • /
    • pp.57-70
    • /
    • 2012
  • This article presents a numerical investigation concerning the effect of two kinds of axially progressing internal flows (namely, upward and downward) on fluid.structure interaction (FSI) dynamics about a marine riser model which is subject to external shear current. The CAE technology behind the current research is a proposed FSI solution, which combines structural analysis software with CFD technology together. Efficiency validation for the CFD software was carried out first. It has been proved that the result from numerical simulations agrees well with the observation from relating model test cases in which the fluidity of internal flow is ignorable. After verifying the numerical code accuracy, simulations are conducted to study the vibration response that attributes to the internal progressive flow. It is found that the existence of internal flow does play an important role in determining the vibration mode (/dominant frequency) and the magnitude of instantaneous vibration amplitude. Since asymmetric curvature along the riser span emerges in the case of external shear current, the centrifugal and Coriolis accelerations owing to up- and downward internal progressive flows play different roles in determining the fluid.structure interaction response. The discrepancy between them becomes distinct, when the velocity ratio of internal flow against external shear current is relatively high.

Investigation of gene-gene interactions of clock genes for chronotype in a healthy Korean population

  • Park, Mira;Kim, Soon Ae;Shin, Jieun;Joo, Eun-Jeong
    • Genomics & Informatics
    • /
    • v.18 no.4
    • /
    • pp.38.1-38.9
    • /
    • 2020
  • Chronotype is an important moderator of psychiatric illnesses, which seems to be controlled in some part by genetic factors. Clock genes are the most relevant genes for chronotype. In addition to the roles of individual genes, gene-gene interactions of clock genes substantially contribute to chronotype. We investigated genetic associations and gene-gene interactions of the clock genes BHLHB2, CLOCK, CSNK1E, NR1D1, PER1, PER2, PER3, and TIMELESS for chronotype in 1,293 healthy Korean individuals. Regression analysis was conducted to find associations between single nucleotide polymorphism (SNP) and chronotype. For gene-gene interaction analyses, the quantitative multifactor dimensionality reduction (QMDR) method, a nonparametric model-free method for quantitative phenotypes, were performed. No individual SNP or haplotype showed a significant association with chronotype by both regression analysis and single-locus model of QMDR. QMDR analysis identified NR1D1 rs2314339 and TIMELESS rs4630333 as the best SNP pairs among two-locus interaction models associated with chronotype (cross-validation consistency [CVC] = 8/10, p = 0.041). For the three-locus interaction model, the SNP combination of NR1D1 rs2314339, TIMELESS rs4630333, and PER3 rs228669 showed the best results (CVC = 4/10, p < 0.001). However, because the mean differences between genotype combinations were minor, the clinical roles of clock gene interactions are unlikely to be critical.