• Title/Summary/Keyword: Interaction Modeling

Search Result 1,094, Processing Time 0.024 seconds

Simulation of Wave Propagation by Cellular Automata Method (세포자동자법에 의한 파동전파의 시뮬레이션)

  • ;;森下信
    • Journal of KSNVE
    • /
    • v.10 no.4
    • /
    • pp.610-614
    • /
    • 2000
  • Cellular Automata(CA)s are used as a simple mathematical model to investigate self-organization in statistical mechanics, which are originally introduced by von Neumann and S. Ulam at the end of the 1940s. CAs provide a framework for a large class of discrete models with homogeneous interactions, which are characterized by the following fundamental properties: 1) CAs are dynamical systems in which space and time are discrete. 2) The systems consist of a regular grid of cells. 3) Each cell is characterized by a state taken from a finite set of states and updated synchronously in discrete time steps according to a local, identical interaction rule. 4) The state of a cell is determined by the previous states of a surrounding neighborhood of cells. A cellular automaton has been attracted wide interest in modeling physical phenomena, which are described generally, partial differential equations such as diffusion and wave propagation. This paper describes one and two-dimensional analysis of wave propagation phenomena modeled by CA, where the local interaction rules were derived referring to the Lattice Gas Model reported by Chen et al., and also including finite difference scheme. Modeling processes by using CA are discussed and the simulation results of wave propagation with one wave source are compared with that by finite difference method.

  • PDF

The Development of Fully Coupled SWAT-MODFLOW Model (II) Evaluation of Model (완전 연동형 SWAT-MODFLOW 결합모형 (II) 모형의 평가)

  • Kim, Nam-Won;Chung, Il-Moon;Won, Yoo-Seung
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.6
    • /
    • pp.509-515
    • /
    • 2004
  • In this study, comprehensive evaluation on the fully coupled SWAT-MODFLOW model is performed. Since combined model can consider the spatially varied daily recharge rate, groundwater modeling would be greatly enhanced. Also, combined model has been able to generate the distribution of groundwater heads with time, surface-subsurface flow modeling would be greatly advanced. River-aquifer interaction is well established in the combined model considering two-way interactions. Consequently, the reliability of groundwater discharge and total runoff of watershed would be greatly enhanced when combined model is used.

Modeling of air cushion vehicle's flexible seals under steady state conditions

  • Zalek, Steven F.;Karr, Dale G.;Jabbarizadeh, Sara;Maki, Kevin J.
    • Ocean Systems Engineering
    • /
    • v.1 no.1
    • /
    • pp.17-28
    • /
    • 2011
  • The purpose of this paper is to demonstrate the efficacy of modeling a surface effect ship's air-cushion flexible seal utilizing a two-dimensional beam under steady state conditions. This effort is the initial phase of developing a more complex three-dimensional model of the air-seal-water fluid-structure interaction. The beam model incorporates the seal flexural rigidity and mass with large deformations while assuming linear elastic material response. The hydrodynamic pressure is derived utilizing the OpenFOAM computational fluid dynamic (CFD) solver for a given set of steady-state flow condition. The pressure distribution derived by the CFD solver is compared with the pressure required to deform the seal beam model. The air pressure, flow conditions and seal geometry are obtained from experimental analysis. The experimental data was derived from large-scale experimental tests utilizing a test apparatus of a canonical surface effect ship's flexible seal in a towing tank over a variety of test conditions.

Numerical simulation of soil-structure interaction in framed and shear-wall structures

  • Dalili, M.;Alkarni, A.;Noorzaei, J.;Paknahad, M.;Jaafar, M.S.;Huat, B.B.K.
    • Interaction and multiscale mechanics
    • /
    • v.4 no.1
    • /
    • pp.17-34
    • /
    • 2011
  • This paper deals with the modeling of the plane frame structure-foundation-soil system. The superstructure along with the foundation beam is idealized as beam bending elements. The soil medium near the foundation beam with stress concentrated is idealized by isoparametric finite elements, and infinite elements are used to represent the far field of the soil media. This paper presents the modeling of shear wall structure-foundation and soil system using the optimal membrane triangular, super and conventional finite elements. Particularly, an alternative formulation is presented for the optimal triangular elements aimed at reducing the programming effort and computational cost. The proposed model is applied to a plane frame-combined footing-soil system. It is shown that the total settlement obtained from the non-linear interactive analysis is about 1.3 to 1.4 times that of the non-interactive analysis. Furthermore, the proposed model was found to be efficient in simulating the shear wall-foundation-soil system, being able to yield results that are similar to those obtained by the conventional finite element method.

Intestinal organoids as advanced modeling platforms to study the role of host-microbiome interaction in homeostasis and disease

  • Ji-Su Ahn;Min-Jung Kang;Yoojin Seo;Hyung-Sik Kim
    • BMB Reports
    • /
    • v.56 no.1
    • /
    • pp.15-23
    • /
    • 2023
  • After birth, animals are colonized by a diverse community of microorganisms. The digestive tract is known to contain the largest number of microbiome in the body. With emergence of the gut-brain axis, the importance of gut microbiome and its metabolites in host health has been extensively studied in recent years. The establishment of organoid culture systems has contributed to studying intestinal pathophysiology by replacing current limited models. Owing to their architectural and functional complexity similar to a real organ, co-culture of intestinal organoids with gut microbiome can provide mechanistic insights into the detrimental role of pathobiont and the homeostatic function of commensal symbiont. Here organoid-based bacterial co-culture techniques for modeling host-microbe interactions are reviewed. This review also summarizes representative studies that explore impact of enteric microorganisms on intestinal organoids to provide a better understanding of host-microbe interaction in the context of homeostasis and disease.

Conceptual Geochemical Modelling of Long-term Hyperalkaline Groundwater and Rock Interaction (지구화학 모델을 이용한 장기간의 강알칼리성 지하수-암석의 반응 개념 모델링)

  • Choi, Byoung-Young;Yoo, Si-Won;Chang, Kwang-Soo;Kim, Geon-Young;Koh, Yong-Kwon;Choi, Jong-Won
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.4
    • /
    • pp.273-281
    • /
    • 2007
  • Hyperalkaline groundwater formed by groundwater-cement components and its reaction with bedrock in a nuclear waste repository were simulated by geochemical modeling. The result of groundwater-cement components reaction showed that the pH of water was 13.3 and the precipitated minerals were Brucite, Katoite, Calcium Silicate Hydrate(CSH1.1), Ettringite, Hematite, and Portlandite. The result of interaction between such minerals and groundwater sampled in Gyeongju area also showed that the pH of groundwater reached 12.4. Interaction between such hyperalkaline groundwater and granite was simulated by kinetic model during $10^3$ years. This result showed that the final pH of groundwater reached 11.2 and the variation of pH was controlled by dissolution/precipitation of silicate and CSH minerals. Groundwater quality was also determined by dissolution/precipitation of silicate, CSH, oxide minerals. Our results show that geochemical modeling of long-term hyperalkaline groundwater and rock interaction can contribute to the safety assessment of engineered barrier by predicting geochemical condition in repository site.

  • PDF

Numerical and Experimental Investigation on the Interaction of Subsurface Vortical Flows with a Free Surface (수면하 보오텍스 유동과 자유표면과의 상호 작용에 관한 연구)

  • Mu-Seok Song
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.2
    • /
    • pp.76-85
    • /
    • 1993
  • In order to predict the free surface signature of turbulent ship wakes two things are essential; a basic understanding of the mechanism of turbulent vortical flow/free surface interactions and a mathematical model to accurately predict the signature. The goal of the study described here is both to supplement experimental work to obtain basic understanding, as well as to condense this understanding in a model(or models) that captures the essential phenomena and thus allows predictions. To do so we followed two main paths guided by experimental observations. One is full simulations of the flow using the clavier-Stokes equations. The other is a vortex modeling, where the vortical structures of the flows are approximated by idealized structures, an the interaction assumed to be essentially inviscid. These approaches complement each other. Full simulations are only applicable to small scale phenomena, where the system is simple, and the Reynolds number is low. The vortex modeling, on the other hand, cannot represent essentially viscous aspects of the problem such as the effect of contamination gradient. Obviously, the modeling is what may eventually lead to a prediction method; the full simulations-too limited to mimic all but the simplest circumstances-are to aid and support the construction of realistic models. We address two-dimensional aspects of the vortex/free surface interaction first. Secondly we obtain some basic understanding of the interaction process through an experiment and then talk about several three-dimensional problems hoping to develop a successful prediction model.

  • PDF

A Study on Flooding·Sinking Simulation for Cause Analysis of No. 501 Oryong Sinking Accident (제501 오룡호 침몰사고 원인분석을 위한 침수·침몰 시뮬레이션 연구)

  • Lee, Jae-Seok;Jung, Hyun-Sub;Oh, Jai-Ho;Lee, Sang-Gab
    • Journal of Navigation and Port Research
    • /
    • v.41 no.6
    • /
    • pp.451-466
    • /
    • 2017
  • Deep-sea fishing vessel No. 501 Oryong was fully flooded through its openings and sunk to the bottom of the sea due to the very rough sea weather on the way of evasion after a fishing operation in the Bearing Sea. As a result, many crew members died and/or were missing. In this study, a full-scale ship flooding sinking simulation was conducted, and the sinking process was analyzed for the precise and scientific investigation of the sinking accident using highly advanced Modeling & Simulation (M&S) system of Fluid-Structure Interaction (FSI) analysis technique. To objectively secure the weather and sea states during the sinking accident in the Bering Sea, time-based wind and wave simulation at the region of the sinking accident was carried out and analyzed, and the weather and sea states were realized by simulating the irregular strong wave and wind spectrums. Simulation scenarios were developed and full-scale ship and fluid (air & seawater) modeling was performed for the flooding sinking simulation, by investigating the hull form, structural arrangement & weight distribution, and exterior inflow openings and interior flooding paths through its drawings, and by estimating the main tank capacities and their loading status. It was confirmed that the flooding and sinking accident was slightly different from a general capsize and sinking accident according to the simple loss of stability.

3D Pose Estimation of a Human Arm for Human-Computer Interaction - Application of Mechanical Modeling Techniques to Computer Vision (인간-컴퓨터 상호 작용을 위한 인간 팔의 3차원 자세 추정 - 기계요소 모델링 기법을 컴퓨터 비전에 적용)

  • Han Young-Mo
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.42 no.4 s.304
    • /
    • pp.11-18
    • /
    • 2005
  • For expressing intention the human often use body languages as well as vocal languages. Of course the gestures using arms and hands are the representative ones among the body languages. Therefore it is very important to understand the human arm motion in human-computer interaction. In this respect we present here how to estimate 3D pose of human arms by using computer vision systems. For this we first focus on the idea that the human arm motion consists of mostly revolute joint motions, and then we present an algorithm for understanding 3D motion of a revolute joint using vision systems. Next we apply it to estimating 3D pose of human arms using vision systems. The fundamental idea for this algorithm extension is that we may apply the algorithm for a revolute joint to each of the revolute joints of hmm arms one after another. In designing the algorithms we focus on seeking closed-form solutions with high accuracy because we aim at applying them to human computer interaction for ubiquitous computing and virtual reality.

DEVS Modeling for Interactive Motion-based Mobile Contents Authoring Tool (모바일 기기 환경의 인터렉티브 모션 기반 콘텐츠 개발 도구와 DEVS 모델링)

  • Ju, Seunghwan;Choi, Yohan;Lim, Yongsoo;Seo, Heesuk
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.11 no.2
    • /
    • pp.121-129
    • /
    • 2015
  • Interactive media is a method of communication in which the output from the media comes from the input of the users. The interactive media lets the user go back with the media. Interactive media works with the user's participation. The media still has the same purpose but the user's input adds the interaction and brings interesting features to the system for a better enjoyment. We need a digital content using a dynamic motion and gesture of the mobile device. We made an authoring tool for content producers to easily create interactive content. We have tried to take advantage of the interaction by using a touch screen and a gravity sensor of the mobile device. This interaction may lead to allow the user to participate in the content, it can be used as a key device to assist in engagement. Furthermore, our authoring tool can be applied to various fields of publishing content.