Acknowledgement
This study was supported by the National Research Foundation of Korea (NRF), funded by the Ministry of Science and ICT (2018-R1A5A2023879, 2019-R1A2C2085876) and the Ministry of Education (2021-R1I1A1A01055654). Korean Fund for Regenerative Medicine (KFRM) grant funded by the Ministry of Science and ICT and the Ministry of Health & Welfare (22A0205L1) also supported this project.
References
- Ley RE, Peterson DA and Gordon JI (2006) Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124, 837-848 https://doi.org/10.1016/j.cell.2006.02.017
- Lynch JB and Hsiao EY (2019) Microbiomes as sources of emergent host phenotypes. Science 365, 1405-1408 https://doi.org/10.1126/science.aay0240
- Nishida A, Inoue R, Inatomi O, Bamba S, Naito Y and Andoh A (2018) Gut microbiota in the pathogenesis of inflammatory bowel disease. Clin J Gastroenterol 11, 1-10 https://doi.org/10.1007/s12328-017-0813-5
- Baumler AJ and Sperandio V (2016) Interactions between the microbiota and pathogenic bacteria in the gut. Nature 535, 85-93 https://doi.org/10.1038/nature18849
- Park EM, Chelvanambi M, Bhutiani N, Kroemer G, Zitvogel L and Wargo JA (2022) Targeting the gut and tumor microbiota in cancer. Nat Med 28, 690-703 https://doi.org/10.1038/s41591-022-01779-2
- Nguyen TLA, Vieira-Silva S, Liston A and Raes J (2015) How informative is the mouse for human gut microbiota research? Dis Model Mech 8, 1-16 https://doi.org/10.1242/dmm.017400
- Kim J, Koo BK and Knoblich JA (2020) Human organoids: model systems for human biology and medicine. Nat Rev Mol Cell Biol 21, 571-584 https://doi.org/10.1038/s41580-020-0259-3
- Sato T, Vries RG, Snippert HJ et al (2009) Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459, 262-265 https://doi.org/10.1038/nature07935
- Menche C and Farin HF (2021) Strategies for genetic manipulation of adult stem cell-derived organoids. Exp Mol Med 53, 1483-1494 https://doi.org/10.1038/s12276-021-00609-8
- Min S, Kim S and Cho SW (2020) Gastrointestinal tract modeling using organoids engineered with cellular and microbiota niches. Exp Mol Med 52, 227-237 https://doi.org/10.1038/s12276-020-0386-0
- Leslie JL, Huang S, Opp JS et al (2015) Persistence and toxin production by Clostridium difficile within human intestinal organoids result in disruption of epithelial paracellular barrier function. Infect Immun 83, 138-145 https://doi.org/10.1128/IAI.02561-14
- Zhang Y and Yu LC (2008) Microinjection as a tool of mechanical delivery. Curr Opin Biotechnol 19, 506-510 https://doi.org/10.1016/j.copbio.2008.07.005
- Poletti M, Arnauts K, Ferrante M and Korcsmaros T (2021) Organoid-based models to study the role of host-micrbiota Interactions in IBD. J Crohns Colitis 15, 1222-1235 https://doi.org/10.1093/ecco-jcc/jjaa257
- Ginga NJ, Slyman R, Kim GA et al (2022) Perfusion system for modification of luminal contents of human intestinal organoids and realtime imaging analysis of microbial populations. Micromachines (Basel) 13, 131
- Puschhof J, Pleguezuelos-Manzano C, Martinez-Silgado A et al (2021) Intestinal organoid cocultures with microbes. Nat Protoc 16, 4633-4649 https://doi.org/10.1038/s41596-021-00589-z
- Williamson IA, Arnold JW, Samsa LA et al (2018) A high-throughput organoid microinjection platform to study gastrointestinal microbiota and luminal physiology. Cell Mol Gastroenterol Hepatol 6, 301-319 https://doi.org/10.1016/j.jcmgh.2018.05.004
- Chen Y, Cao K, Liu H et al (2021) Heat killed Salmonella typhimurium protects intestine against radiation injury through wnt signaling pathway. J Oncol 2021, 5550956
- Fischer S, Uckert AK, Landenberger M et al (2020) Human peptide alpha-defensin-1 interferes with Clostridioides difficile toxins TcdA, TcdB, and CDT. FASEB J 34, 6244-6261 https://doi.org/10.1096/fj.201902816R
- Liu R, Moriggl R, Zhang D et al (2019) Constitutive STAT5 activation regulates Paneth and Paneth-like cells to control Clostridium difficile colitis. Life Sci Alliance 2, e201900296
- Huang J, Zhou C, Zhou G, Li H and Ye K (2021) Effect of Listeria monocytogenes on intestinal stem cells in the coculture model of small intestinal organoids. Microb Pathog 153, 104776
- Iftekhar A, Berger H, Bouznad N et al (2021) Genomic aberrations after short-term exposure to colibactin-producing E. coli transform primary colon epithelial cells. Nat Commun 12, 1003
- Sato T, Stange DE, Ferrante M et al (2011) Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium. Gastroenterology 141, 1762-1772 https://doi.org/10.1053/j.gastro.2011.07.050
- Thorne CA, Chen IW, Sanman LE, Cobb MH, Wu LF and Altschuler SJ (2018) Enteroid monolayers reveal an autonomous WNT and BMP circuit controlling intestinal epithelial growth and organization. Dev Cell 44, 624-633 e624
- Nickerson KP, Llanos-Chea A, Ingano L et al (2021) A versatile human intestinal organoid-derived epithelial monolayer model for the study of enteric pathogens. Microbiol Spectr 9, e0000321
- Zhang J, Hernandez-Gordillo V, Trapecar M et al (2021) Coculture of primary human colon monolayer with human gut bacteria. Nat Protoc 16, 3874-3900 https://doi.org/10.1038/s41596-021-00562-w
- Nossol C, Diesing AK, Walk N et al (2011) Air-liquid interface cultures enhance the oxygen supply and trigger the structural and functional differentiation of intestinal porcine epithelial cells (IPEC). Histochem Cell Biol 136, 103-115 https://doi.org/10.1007/s00418-011-0826-y
- Sachs N, Papaspyropoulos A, Zomer-van Ommen DD et al (2019) Long-term expanding human airway organoids for disease modeling. EMBO J 38, e100300
- Kim R, Attayek PJ, Wang Y et al (2019) An in vitro intestinal platform with a self-sustaining oxygen gradient to study the human gut/microbiome interface. Biofabrication 12, 015006
- Sasaki N, Miyamoto K, Maslowski KM, Ohno H, Kanai T and Sato T (2020) Development of a scalable coculture system for gut anaerobes and human colon epithelium. Gastroenterology 159, 388-390 https://doi.org/10.1053/j.gastro.2020.03.021
- Co JY, Margalef-Catala M, Li X et al (2019) Controlling epithelial polarity: a human enteroid model for host-pathogen interactions. Cell Rep 26, 2509-2520 https://doi.org/10.1016/j.celrep.2019.01.108
- Troeger C, Blacker BF, Khalil IA et al (2018) Estimates of the global, regional, and national morbidity, mortality, and aetiologies of diarrhoea in 195 countries: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Infect Dis 18, 1211-1228 https://doi.org/10.1016/S1473-3099(18)30362-1
- Hazen TH, Michalski J, Nagaraj S, Okeke IN and Rasko DA (2017) Characterization of a large antibiotic resistance plasmid found in enteropathogenic escherichia coli strain B171 and its relatedness to plasmids of diverse E. coli and shigella strains. Antimicrob Agents Chemother 61, e00995-17
- Livio S, Strockbine NA, Panchalingam S et al (2014) Shigella isolates from the global enteric multicenter study inform vaccine development. Clin Infect Dis 59, 933-941 https://doi.org/10.1093/cid/ciu468
- Llanos-Chea A, Citorik RJ, Nickerson KP et al (2019) Bacteriophage therapy testing against shigella flexneri in a novel human intestinal organoid-derived infection model. J Pediatr Gastroenterol Nutr 68, 509-516 https://doi.org/10.1097/MPG.0000000000002203
- Ranganathan S, Doucet M, Grassel CL, Delaine-Elias B, Zachos NC and Barry EM (2019) Evaluating shigella flexneri pathogenesis in the human enteroid model. Infect Immun 87, e00740-18
- Koestler BJ, Ward CM, Fisher CR, Rajan A, Maresso AW and Payne SM (2019) Human intestinal enteroids as a model system of shigella pathogenesis. Infect Immun 87, e00733-18
- Jajere SM (2019) A review of Salmonella enterica with particular focus on the pathogenicity and virulence factors, host specificity and antimicrobial resistance including multidrug resistance. Vet World 12, 504-521 https://doi.org/10.14202/vetworld.2019.504-521
- Zhang YG, Wu S, Xia Y and Sun J (2014) Salmonella-infected crypt-derived intestinal organoid culture system for host-bacterial interactions. Physiol Rep 2, e12147
- Geiser P, Di Martino ML, Samperio Ventayol P et al (2021) Salmonella enterica serovar typhimurium exploits cycling through epithelial cells to colonize human and murine enteroids. mBio 12, e02684-20
- Forbester JL, Goulding D, Vallier L et al (2015) Interaction of Salmonella enterica serovar typhimurium with intestinal organoids derived from human induced pluripotent stem cells. Infect Immun 83, 2926-2934 https://doi.org/10.1128/IAI.00161-15
- Lawrence AE, Abuaita BH, Berger RP et al (2021) Salmonella enterica serovar typhimurium SPI-1 and SPI-2 shape the global transcriptional landscape in a human intestinal organoid model system. mBio 12, e00399-21
- Verma S, Prescott RA, Ingano L et al (2020) The YrbE phospholipid transporter of Salmonella enterica serovar Typhi regulates the expression of flagellin and influences motility, adhesion and induction of epithelial inflammatory responses. Gut Microbes 11, 526-538 https://doi.org/10.1080/19490976.2019.1697593
- Blount ZD (2015) The unexhausted potential of E. coli. Elife 4, e05826
- Kaper JB, Nataro JP and Mobley HL (2004) Pathogenic Escherichia coli. Nat Rev Microbiol 2, 123-140 https://doi.org/10.1038/nrmicro818
- Takeda Y (1997) Enterohaemorrhagic Escherichia coli. World Health Stat Q 50, 74-80
- In J, Foulke-Abel J, Zachos NC et al (2016) Enterohemorrhagic Escherichia coli reduce mucus and intermicrovillar bridges in human stem cell-derived colonoids. Cell Mol Gastroenterol Hepatol 2, 48-62 e43
- Tse CM, In JG, Yin J et al (2018) Enterohemorrhagic E. coli (EHEC)-secreted serine protease EspP stimulates electrogenic ion transport in human colonoid monolayers. Toxins (Basel) 10, 351
- Kotloff KL, Nataro JP, Blackwelder WC et al (2013) Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric Multi-center Study, GEMS): a prospective, case-control study. Lancet 382, 209-222 https://doi.org/10.1016/S0140-6736(13)60844-2
- Evans DJ Jr and Evans DG (1973) Three characteristics associated with enterotoxigenic Escherichia coli isolated from man. Infect Immun 8, 322-328 https://doi.org/10.1128/iai.8.3.322-328.1973
- Foulke-Abel J, Yu H, Sunuwar L et al (2020) Phosphodiesterase 5 (PDE5) restricts intracellular cGMP accumulation during enterotoxigenic Escherichia coli infection. Gut Microbes 12, 1752125
- Vermeire B, Gonzalez LM, Jansens RJJ, Cox E and Devriendt B (2021) Porcine small intestinal organoids as a model to explore ETEC-host interactions in the gut. Vet Res 52, 94
- Dejea CM, Fathi P, Craig JM et al (2018) Patients with familial adenomatous polyposis harbor colonic biofilms containing tumorigenic bacteria. Science 359, 592-597 https://doi.org/10.1126/science.aah3648
- Escobar-Paramo P, Le Menac'h A, Le Gall T et al (2006) Identification of forces shaping the commensal Escherichia coli genetic structure by comparing animal and human isolates. Environ Microbiol 8, 1975-1984 https://doi.org/10.1111/j.1462-2920.2006.01077.x
- Pleguezuelos-Manzano C, Puschhof J, Rosendahl Huber A et al (2020) Mutational signature in colorectal cancer caused by genotoxic pks(+) E. coli. Nature 580, 269-273 https://doi.org/10.1038/s41586-020-2080-8
- Chandrasekaran R and Lacy DB (2017) The role of toxins in Clostridium difficile infection. FEMS Microbiol Rev 41, 723-750 https://doi.org/10.1093/femsre/fux048
- Engevik MA, Engevik KA, Yacyshyn MB et al (2015) Human Clostridium difficile infection: inhibition of NHE3 and microbiota profile. Am J Physiol Gastrointest Liver Physiol 308, G497-G509 https://doi.org/10.1152/ajpgi.00090.2014
- Mileto SJ, Jarde T, Childress KO et al (2020) Clostridioides difficile infection damages colonic stem cells via TcdB, impairing epithelial repair and recovery from disease. Proc Natl Acad Sci U S A 117, 8064-8073 https://doi.org/10.1073/pnas.1915255117
- Engevik MA, Danhof HA, Chang-Graham AL et al (2020) Human intestinal enteroids as a model of Clostridioides difficile-induced enteritis. Am J Physiol Gastrointest Liver Physiol 318, G870-G888 https://doi.org/10.1152/ajpgi.00045.2020
- di Masi A, Leboffe L, Polticelli F et al (2018) Human serum albumin is an essential component of the host defense mechanism against clostridium difficile intoxication. J Infect Dis 218, 1424-1435 https://doi.org/10.1093/infdis/jiy338
- Zhu Z, Schnell L, Muller B, Muller M, Papatheodorou P and Barth H (2019) The antibiotic bacitracin protects human intestinal epithelial cells and stem cell-derived intestinal organoids from clostridium difficile toxin TcdB. Stem Cells Int 2019, 4149762
- Sigman M and Luchette FA (2012) Cholera: something old, something new. Surg Infect (Larchmt) 13, 216-222 https://doi.org/10.1089/sur.2012.127
- Foulke-Abel J, In J, Yin J et al (2016) Human enteroids as a model of upper small intestinal ion transport physiology and pathophysiology. Gastroenterology 150, 638-649 e638
- Zomer-van Ommen DD, Pukin AV, Fu O et al (2016) Functional characterization of cholera toxin inhibitors using human intestinal organoids. J Med Chem 59, 6968-6972 https://doi.org/10.1021/acs.jmedchem.6b00770
- Kuhlmann FM, Santhanam S, Kumar P, Luo Q, Ciorba MA and Fleckenstein JM (2016) Blood group O-dependent cellular responses to cholera toxin: parallel clinical and epidemiological links to severe cholera. Am J Trop Med Hyg 95, 440-443 https://doi.org/10.4269/ajtmh.16-0161
- Radoshevich L and Cossart P (2018) Listeria monocytogenes: towards a complete picture of its physiology and pathogenesis. Nat Rev Microbiol 16, 32-46 https://doi.org/10.1038/nrmicro.2017.126
- Zhou C, Zhang Y, Bassey A, Huang J, Zou Y and Ye K (2022) Expansion of intestinal secretory cell population induced by listeria monocytogenes infection: accompanied with the inhibition of NOTCH pathway. Front Cell Infect Microbiol 12, 793335
- Zhou C, Zou Y, Zhang Y, Teng S and Ye K (2022) Involvement of CCN1 protein and TLR2/4 signaling pathways in intestinal epithelial cells response to listeria monocytogenes. Int J Mol Sci 23, 2739
- Kim M, Fevre C, Lavina M, Disson O and Lecuit M (2021) Live imaging reveals listeria hijacking of E-cadherin recycling as it crosses the intestinal barrier. Curr Biol 31, 1037-1047 e4
- Zhou C, Zou Y, Huang J et al (2022) TMT-based quantitative proteomic analysis of intestinal organoids infected by listeria monocytogenes strains with different virulence. Int J Mol Sci 23, 6231
- Wu N, Yang X, Zhang R et al (2013) Dysbiosis signature of fecal microbiota in colorectal cancer patients. Microb Ecol 66, 462-470 https://doi.org/10.1007/s00248-013-0245-9
- Phongsisay V (2016) The immunobiology of Campylobacter jejuni: innate immunity and autoimmune diseases. Immunobiology 221, 535-543 https://doi.org/10.1016/j.imbio.2015.12.005
- He Z, Gharaibeh RZ, Newsome RC et al (2019) Campylobacter jejuni promotes colorectal tumorigenesis through the action of cytolethal distending toxin. Gut 68, 289-300 https://doi.org/10.1136/gutjnl-2018-317200
- Shang FM and Liu HL (2018) Fusobacterium nucleatum and colorectal cancer: a review. World J Gastrointest Oncol 10, 71-81 https://doi.org/10.4251/wjgo.v10.i3.71
- Engevik MA, Danhof HA, Ruan W et al (2021) Fusobacterium nucleatum secretes outer membrane vesicles and promotes intestinal inflammation. mBio 12, e02706-20 https://doi.org/10.1128/mBio.02706-20
- Seo Y, Oh SJ, Ahn JS, Shin YY, Yang JW and Kim HS (2019) Implication of Porphyromonas gingivalis in colitis and homeostasis of intestinal epithelium. Lab Anim Res 35, 26
- Khan R, Petersen FC and Shekhar S (2019) Commensal bacteria: an emerging player in defense against respiratory pathogens. Front Immunol 10, 1203
- Lordan C, Thapa D, Ross RP and Cotter PD (2020) Potential for enriching next-generation health-promoting gut bacteria through prebiotics and other dietary components. Gut Microbes 11, 1-20 https://doi.org/10.1080/19490976.2019.1613124
- Park NY and Koh A (2022) From the dish to the real world: modeling interactions between the gut and microorganisms in gut organoids by tailoring the gut milieu. Int J Stem Cells 15, 70-84 https://doi.org/10.15283/ijsc21243
- Wu H, Xie S, Miao J et al (2020) Lactobacillus reuteri maintains intestinal epithelial regeneration and repairs damaged intestinal mucosa. Gut Microbes 11, 997-1014 https://doi.org/10.1080/19490976.2020.1734423
- Hou QH, Ye LL, Liu HF et al (2018) Lactobacillus accelerates ISCs regeneration to protect the integrity of intestinal mucosa through activation of STAT3 signaling pathway induced by LPLs secretion of IL-22. Cell Death Differ 25, 1657-1670 https://doi.org/10.1038/s41418-018-0070-2
- Engevik MA, Ruan W, Esparza M et al (2021) Immunomodulation of dendritic cells by Lactobacillus reuteri surface components and metabolites. Physiol Rep 9, e14719
- Aoki-Yoshida A, Saito S, Fukiya S et al (2016) Lactobacillus rhamnosus GG increases Toll-like receptor 3 gene expression in murine small intestine ex vivo and in vivo. Benef Microbes 7, 421-429 https://doi.org/10.3920/BM2015.0169
- Han X, Lee A, Huang S, Gao J, Spence JR and Owyang C (2019) Lactobacillus rhamnosus GG prevents epithelial barrier dysfunction induced by interferon-gamma and fecal supernatants from irritable bowel syndrome patients in human intestinal enteroids and colonoids. Gut Microbes 10, 59-76 https://doi.org/10.1080/19490976.2018.1479625
- Lu X, Xie S, Ye L, Zhu L and Yu Q (2020) Lactobacillus protects against S. typhimurium-induced intestinal inflammation by determining the fate of epithelial proliferation and differentiation. Mol Nutr Food Res 64, e1900655
- Sittipo P, Pham HQ, Park CE et al (2020) Irradiation-induced intestinal damage is recovered by the indigenous gut bacteria lactobacillus acidophilus. Front Cell Infect Microbiol 10, 415
- Pino A, Benkaddour B, Inturri R et al (2022) Characterization of Bifidobacterium asteroides Isolates. Microorganisms 10, 655
- Pradhan S and Weiss AA (2020) Probiotic properties of escherichia coli nissle in human intestinal organoids. mBio 11, e01470-20
- Hill DR, Huang S, Nagy MS et al (2017) Bacterial colonization stimulates a complex physiological response in the immature human intestinal epithelium. Elife 6, e29132
- Kim J, Koo BK and Knoblich JA (2020) Human organoids: model systems for human biology and medicine. Nat Rev Mol Cell Biol 21, 571-584 https://doi.org/10.1038/s41580-020-0259-3
- Lee JY, Tsolis RM and Baumler AJ (2022) The microbiome and gut homeostasis. Science 377, eabp9960