KSII Transactions on Internet and Information Systems (TIIS)
/
제18권6호
/
pp.1562-1582
/
2024
The prediction of pedestrian trajectory is conducive to reducing traffic accidents and protecting pedestrian safety, which is crucial to the task of intelligent driving. The existing methods mainly use the past pedestrian trajectory to predict the future deterministic pedestrian trajectory, ignoring pedestrian intention and trajectory diversity. This paper proposes a multi-modal trajectory prediction model that introduces pedestrian intention. Unlike previous work, our model makes multi-modal goal-conditioned trajectory pedestrian prediction based on the past pedestrian trajectory and pedestrian intention. At the same time, we propose a novel Gate Recurrent Unit (GRU) to process intention information dynamically. Compared with traditional GRU, our GRU adds an intention unit and an intention gate, in which the intention unit is used to dynamically process pedestrian intention, and the intention gate is used to control the intensity of intention information. The experimental results on two first-person traffic datasets (JAAD and PIE) show that our model is superior to the most advanced methods (Improved by 30.4% on MSE0.5s and 9.8% on MSE1.5s for the PIE dataset; Improved by 15.8% on MSE0.5s and 13.5% on MSE1.5s for the JAAD dataset). Our multi-modal trajectory prediction model combines pedestrian intention that varies at each prediction time step and can more comprehensively consider the diversity of pedestrian trajectories. Our method, validated through experiments, proves to be highly effective in pedestrian trajectory prediction tasks, contributing to improving traffic safety and the reliability of intelligent driving systems.
Objectives: The purpose of this study was to test the Theory of Planned Behavior (TPB) in the prediction of smoking cessation intention and smoking cessation behavior among adolescent smokers, in order to provide basic data to develop a future smoking cessation program as a nursing intervention. Method: The study subjects were 80 adolescent smokers who had smoked one cigarette and attended a five-day school smoking cessation program. The data were collected from October 24 to December 21, 1999. The instruments used in this study were the tools developed by Jee (1994) to measure TPB variables such as attitude toward smoking cessation behavior, subjective norm, perceived behavioral control, smoking cessation intention, and smoking cessation behavior. The data were analyzed with the SAS/PC program using descriptive statistics, hierarchical multiple regression, and logistic multiple regression. Results: 1. Attitude toward smoking cessation behavior, subjective norm, and perceived behavioral control were partially significant in predicting smoking cessation intention. 2. Smoking cessation intention and perceived behavioral control toward smoking cessation behavior did not significantly predict smoking cessation behavior. 3. There were partial interaction effects among the attitude toward smoking cessation behavior, subjective norm, and perceived behavioral control in the prediction of smoking cessation intention. 4. There were partial interaction effects between smoking cessation intention and perceiver behavioral control toward smoking cessation behavior in the prediction of smoking cessation behavior. Conclusion: This study partially demonstrated support for the TPB model that was partially useful in predicting smoking cessation intention and smoking cessation behavior among adolescent smokers. Therefore, it is recommended that attitude toward smoking cessation behavior and perceived behavioral control should be considered in developing smoking cessation programs and implementing nursing interventions to change the smoking behavior of adolescent smokers.
Objective: The purpose of this study is to develop a machine learning model to predict the subsequent childbirth intention of married women with one child, aiming to address the low birth rate problem in Korea, This will be achieved by utilizing data from the 2021 Family and Childbirth Survey conducted by the Korea Institute for Health and Social Affairs. Methods: A prediction model was developed using the Random Forest algorithm to predict the subsequent childbirth intention of married women with one child. This algorithm was chosen for its advantages in prediction and generalization, and its performance was evaluated. Results: The significance of variables influencing the Random Forest prediction model was confirmed. With the exception of the presence or absence of leave before and after childbirth, most variables contributed to predicting the intention to have subsequent childbirth. Notably, variables such as the mother's age, number of children planned at the time of marriage, average monthly household income, spouse's share of childcare burden, mother's weekday housework hours, and presence or absence of spouse's maternity leave emerged as relatively important predictors of subsequent childbirth intention.
The purpose of this study was to test the Theory of Planned Behavior in the prediction of contraceptive behavior among married women. This study used a descriptive correlational design to examine the relationships among the study variables. Eighty married women in Seoul and Kyungki-do participated in this study, Research instruments used were the tool for measuring TPB variables search as attitude toward contraception, subjective norm, perceived behavioral control, and intention ; and the tool for measuring contraceptive behavior. The former was modified by the researcher according to Ajzen & Fishbein(1980)'s guidelines for tool development and Jee (1993)'s tool. The latter was developed by the researcher Data was collected from July 20, 1996 to October 25, 1996. The results are as follows ; The three factors, attitude, subjective norm and perceived behavioral control of contraception can explain 30% of the variance in contraceptive intention. Inspection of path coefficient for each of the three predictor variables revealed that subjective norm and perceived behavioral control were the predictor variables on intention, while attitude was not. ; and intention and percevied behavioral control factors can explain 42% of the variance in contraceptive behavior. Inspection of path coefficient for each of the two predictor variables revealed that intention and perceived behavioral control were the predictor variables on behavior. In conclusion, this study identified that Theory of Planned Behavior was a useful model in the prediction of contraceptive behavior, and the contraceptive service program based on the TPB variables would be an effective nursing intervention for the change in contraceptive behavior.
International journal of advanced smart convergence
/
제12권1호
/
pp.157-163
/
2023
The current research aims to examine the moderating effect of consumers' mindset on their product purchase intention in the multi-promotion offers containing both a bonus pack and a price discount (i.e., BP + PD offers). That is, this research investigateswhether consumers' product purchase intention in the BP + PD offers variesdepending on their mindset (growth mindset vs. fixed mindset). Specifically, it is predicted that consumers with a fixed mindset will have higher product purchase intention in the offers containing the high PD but low extra amount of BP (LBP HPD) than in the offers with a high extra amount of BP but low PD (HBP LPD), whereas consumers with a growth mindset will have higher product purchase intention in the HBP LPD offers than in the LBP HPD offers. An experiment wasconducted to test the prediction. Consistent with the prediction, it was found that participants' mindset moderates their product purchase intention in multi-promotion offers. The findings imply that marketers can evoke more positive consumer purchase intention toward BP and PD offers, considering consumer mindset.
Purpose: The purpose of this study was to analyze the effects of job satisfaction and organizational commitment on the nurse's turnover intention working in the social welfare facilities. Methods: The subjects of this study were 319 nurses who were working in the 238 social welfare facilities. The data were collected by self-reporting questionnaires. The data were analyzed using descriptive statistics, Pearson correlation coefficient and multiple regression. Results: It was found that the key predictor of turnover intention was organizational commitment Organizational commitment explained 41.2% of the total variance of turnover intention. In case of sub categories of job satisfaction, organizational commitment had 37.2% prediction and then payment and supervision added 6.2% prediction. Conclusion: These results suggest that the key predict factor of nurse's turnover intention working in social welfare facilities is organizational commitment. Therefore, the findings of this study can be used to develop effective strategies to decrease nurse's turnover intention.
Purpose In order for companies to continue to grow, they should properly manage human resources, which are the core of corporate competitiveness. Employee turnover means the loss of talent in the workforce. When an employee voluntarily leaves his or her company, it will lose hiring and training cost and lead to the withdrawal of key personnel and new costs to train a new employee. From an employee's viewpoint, moving to another company is also risky because it can be time consuming and costly. Therefore, in order to reduce the social and economic costs caused by employee turnover, it is necessary to accurately predict employee turnover intention, identify the factors affecting employee turnover, and manage them appropriately in the company. Design/methodology/approach Prior studies have mainly used logistic regression and decision trees, which have explanatory power but poor predictive accuracy. In order to develop a more accurate prediction model, XGBoost is proposed as the classification technique. Then, to compensate for the lack of explainability, SHAP, one of the XAI techniques, is applied. As a result, the prediction accuracy of the proposed model is improved compared to the conventional methods such as LOGIT and Decision Trees. By applying SHAP to the proposed model, the factors affecting the overall employee turnover intention as well as a specific sample's turnover intention are identified. Findings Experimental results show that the prediction accuracy of XGBoost is superior to that of logistic regression and decision trees. Using SHAP, we find that jobseeking, annuity, eng_test, comm_temp, seti_dev, seti_money, equl_ablt, and sati_safe significantly affect overall employee turnover intention. In addition, it is confirmed that the factors affecting an individual's turnover intention are more diverse. Our research findings imply that companies should adopt a personalized approach for each employee in order to effectively prevent his or her turnover.
화자에 의해서 발성된 문장은 대화가 이루어지고 있는 화제나 발화이도에 따라 문장에 사용되는 단어의 구성 및 문장의 구조에 차이를 보이므로, 본 논문에서는 무형을 기반으로하여 문장의 구조와 의도사이의 관계를 사용하여 화자의 의도를 효과적으로 분석할 수 있는 통계적인 방법인 IDT(intention decision table)를 제안한다. IDT는 문장을 이루는 구성요소를 5가지로 분류하고, 입력문장에 대한 분석을 통해서 얻어진 구성요소들과 의도간의 통계적인 분석을 통해서 얻어진 의도 결정표를 이용하여 문장의 의도를 결정한다. 실험결과, 문장을 구성하는 단어와 이도간의 상관관계를 고려한 경우에 비해서 IDT를 사용하는 경우 10~18%정도의 의도 인식율 향상이 있었으며, 단어의 의도와의 관계 이외에 단어들간의 전이관계를 함께 모델링한 MIG 경우에 비해서도 3~12%의 향상된 의도 인식율을 보임으로써, 본 논문에서 제안한 IDT가 유효함을 알 수 있었다.
The majority of studies on breastfeeding consists of descriptive correlational studies identifying the incidence and correlates of breastfeeding. The theory of planned behavior has been shown to yield great predictive power for behavioral goals over which individuals have only limited control such as improving school grades and weight loss. The purpose of this study was to test the "theory of planned behavior" in the prediction of breastfeeding of mothers who delivered vaginally, One hundred mothers who delivered vaginally in one general hospital in Seoul and one general hospital and three private hospitals in Taejeon participated in this study. The instruments used for data collection in this study were developed by the researchers following the guidelines suggested by Ajzen & Fishbein(1980) and Ajzen & Madden(1986). The instruments included measurement of attitude, subjective norm, perceived behavioral control and intention. The collected data were analyzed using descriptive statistics, Pearson product moment correlation, hierachical multiple regression and logistic regression. The results are as follows ; 1. Intention to breastfeed correlated significantly with attitude, subjective norm and perceived behavioral control. Both attitude and subjective norm did not make a significant contribution to the prediction of intention, but the addition of perceived behavioral control to the regression equation greatly improved the model's predictive power, increasing the R²from .05 to .52. 2. Intention to breastfeed alone had a significant predictive effect on actual breastfeeding, resulting in a regression coefficient of .16(X²=8 60, p<.01), but when perceived behavioral control was added to the equation, intention was not a significant predictive variable and only perceived behavioral control showed significant predictive power on actual breastfeeding, resulting in a regression coefficient of .12(X²=4.69, p<.05). In sum, breastfeeding behavior lent only partial support to the second version of the theory of planned behavior, and because perceived behavioral control had a strong effect on intention to breastfeed and actual breastfeeding, It would be desirable to develop nursing intervention programs which focus on strengthening the perceived behavioral control for the promotion of breastfeeding.
사용자 의도 예측 기술은 음성인식기의 탐색 공간을 줄이기 위한 후처리 방법으로 사용될 수 있으며, 시스템 의도 예측 기술은 유연한 응답 생성을 위한 전처리 방법으로 사용될 수 있다. 이러한 실용적인 필요성에 따라 본 논문에서는 화행과 개념열의 쌍으로 일반화된 화자의 의도를 예측하는 통계 모델을 제안한다. 단순한 화행 n-그램 통계만을 이용한 기존의 모델과는 다르게 제안 모델은 현재 발화까지의 대화 이력을 다양한 언어 레벨의 자질 집합(화행과 개념열 쌍의 n-그램, 단서 단어, 영역 프레임의 상태정보)으로 표현한다. 그리고 추출된 자질 집합을 CRFs(Conditional Random Fields)의 입력으로 사용하여 다음 발화의 의도를 예측한다. 일정 관리 영역에서 실험을 수행한 결과, 제안 모델은 사용자의 화행과 개념열 예측에서 각각 76.25%, 64.21%의 정확률을 보였다. 그리고 시스템의 화행과 개념열 예측에서 각각 88.11%, 87.19%의 정확률을 보였다. 또한 기존 모델과 비교하여 29.32% 높은 평균 정확률을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.