• Title/Summary/Keyword: Intensity Function

Search Result 1,502, Processing Time 0.261 seconds

A study on the temperature distribution measurement of the high pressure mercury lamp (고압 수은등의 온도분포 측정에 대한 연구)

  • 손승현;김상용;김창섭;지철근
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1990.10a
    • /
    • pp.35-40
    • /
    • 1990
  • Temperature distribution of high pressure mercury lamp has been mesured as a function of time using spectroscopic method. Sampling signal which is synchronized by lamp voltage was used to mesure temporal line intensity at each radius. To obtain radial temprature distribution, the mesured intensity was transformed into radial line intensity by Abel's formula. Absolute temperature profile was calculater from relative intensities of spectral lines as a function of line and tube radius. The temperature profile is very similar to the electrical tube current profile.

  • PDF

Evaluation of Stress Intensity Factors for an Electrostrictive Crack with an Electric Yielding Zone (전기적 항복영역을 갖는 전왜균열에 대한 응력강도계수 계산)

  • 범현규;정은도
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.469-472
    • /
    • 2000
  • a crack with electrically impermeable surfaces in an electrostrictive material subjected to uniform electric loading is analysed. A strip yield zone model is employed to investigate the effect of electric yielding on stress intensity factor. complete forms of electric fields and elastic fields for the crack are derived by using complex function theory. /the stress intensity factors are obtained based on the strip yield zone model.

  • PDF

Calculation of Stress Intensity Factors for a Thick Pipe Using Weight Function Method (가중함수법을 이용한 두꺼운 배관의 응력강도계수 계산)

  • Lee, Hyeong-Yeon;Lee, Jae-Han;Yoo, Bong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.7
    • /
    • pp.2167-2173
    • /
    • 1996
  • An approximate weight function technique using the indirect boundary integral equation has been presented for the analysis of stress intensity foactors(SIFs) of a thick pipe. One-term boundary integral was introduced to represent the crack surface displacement field for the displacement based weight function technique. An explicit closed-form SIF solution applicable to symmetric cracked pipes without any modification of the solution including both circumferential and radial cracks has been derived. The necessary information in the analysis is two or three reference SIFs. In most cases the SIF solution were in good agreement with those available in the literature.

Weight Function Theory for a Mode III Crack In a Rectilinear Anisotropic Material (가중함수이론을 이용한 선형이방성재료에서의 Mode III 균열해석)

  • An, Deuk-Man;Kwon, Sun-Hong
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.146-151
    • /
    • 2009
  • In this paper, a weight function theory for the calculation of the mode III stress intensity factor in a rectilinear anisotropic body is formulated. This formulation employs Lekhnitskii's formalism for two dimensional anisotropic materials. To illustrate the method used for the weight function theory, we calculated the mode III stress intensity factor in a single edge-notched configuration.

SINGULAR AND DUAL SINGULAR FUNCTIONS FOR PARTIAL DIFFERENTIAL EQUATION WITH AN INPUT FUNCTION IN H1(Ω)

  • Woo, Gyungsoo;Kim, Seokchan
    • East Asian mathematical journal
    • /
    • v.38 no.5
    • /
    • pp.603-610
    • /
    • 2022
  • In [6, 7] they introduced a new finite element method for accurate numerical solutions of Poisson equations with corner singularities. They consider the Poisson equations with homogeneous boundary conditions, compute the finite element solutions using standard FEM and use the extraction formula to compute the stress intensity factor(s), then they posed new PDE with a regular solution by imposing the nonhomogeneous boundary condition using the computed stress intensity factor(s), which converges with optimal speed. From the solution they could get an accurate solution just by adding the singular part. They considered a partial differential equation with the input function f ∈ L2(Ω). In this paper we consider a PDE with the input function f ∈ H1(Ω) and find the corresponding singular and dual singular functions. We also induce the corresponding extraction formula which are the basic element for the approach.

Integral constants of Transformed geometric Poisson process

  • Park, Jeong-Hyun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.9 no.2
    • /
    • pp.305-310
    • /
    • 1998
  • In this paper, we introduce the conditions that the P-process has the intensity function which it is a standard form of gamma distribution. And we show that the transformed geometric Poisson process which the intensity function is a standard form of gamma distribution is a alternative sign P-process

  • PDF

Low Intensity Resistance Exercise Training with Blood Flow Restriction: Insight into Cardiovascular Function, and Skeletal Muscle Hypertrophy in Humans

  • Park, Song-Young;Kwak, Yi Sub;Harveson, Andrew;Weavil, Joshua C.;Seo, Kook E.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.3
    • /
    • pp.191-196
    • /
    • 2015
  • Attenuated functional exercise capacity in elderly and diseased populations is a common problem, and stems primarily from physical inactivity. Decreased function and exercise capacity can be restored by maintaining muscular strength and mass, which are key factors in an independent and healthy life. Resistance exercise has been used to prevent muscle loss and improve muscular strength and mass. However, the intensities necessary for traditional resistance training to increase muscular strength and mass may be contraindicated for some at risk populations, such as diseased populations and the elderly. Therefore, an alternative exercise modality is required. Recently, blood flow restriction (BFR) with low intensity resistance exercise (LIRE) has been used for such special populations to improve their function and exercise capacity. Although BFR+LIRE has been intensively studied for a decade, a comprehensive review detailing the effects of BFR+LIRE on both skeletal muscle and vascular function is not available. Therefore, the purpose of this review is to discuss previous studies documenting the effects of BFR+LIRE on hormonal and transcriptional factors in muscle hypertrophy and vascular function, including changes in hemodynamics, and endothelial function.

Measurement of Fiber Orientation-Angle Distribution of Glass Fiber Reinforced Polymeric Composite Materials by Intensity Method (농도법에 의한 GFRP 복합재료의 섬유배향각 분포측정)

  • Kim, H.;Ann, J.Y.;Lee, D.G.;Han, G.Y.;Kim, E.G.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.6
    • /
    • pp.34-44
    • /
    • 1996
  • In order to examine the accuracy of the intensity method, the fiber orientation-angle distribution of fiber-reinforced polymeric composites is measured using image processing. The fiber orientation function is calculated from the fiber orientation measured by the soft X-ray photograph. Theoretical and experimental results of fiber orientation function are compared for the composites with different fiber contents and fiber orientations. The intensity method is used for the experimental investigation and the measured fiber orientation function is compared to the calculated one. The relations between the measured and the simulated fiber orientation functions $J{\small{M}}$ and $J{\small{S}}$ respectively are identified. For the fiber length of 1.000mm and 2.000mm, it shows that $J{\small{M}}=0.83J{\small{M}}$. However. in general. the value of $J{\small{M}}$ decreases as the fiber length increases. For GFRP composites the relations between $J{\small{M}}$ and theoretical value J show that $J{\small{M}}$=0.73J for short fiber and $J{\small{M}}$=0.81J for long fiber.

  • PDF

The Effects of High Intensity Laser Therapy on Pain and Function of Patients with Frozen Shoulder

  • Jeon, Chun-Bae;Choi, Seok-Joo;Oh, Hyun-Ju;Jeong, Mu-Geun;Lee, Kwan-Sub
    • The Journal of Korean Physical Therapy
    • /
    • v.29 no.4
    • /
    • pp.207-210
    • /
    • 2017
  • Purpose: This study was to identify the effectiveness of high-intensity laser therapy on pain and function of a frozen shoulder. Methods: Thirty patients were assigned to two groups: the experimental group (n=15) and the control group (n=15). Both groups received traditional therapy for 4 weeks, 3 days a week. The experimental group, however, received an additional high intensity laser therapy. Pain was measured using the visual analogue scale (VAS). The functional ability was measured using the patient specific functional scale (PSFS). A paired t-test was used to determine any differences before and after the treatment, and an independent t-test was used to determine any differences between treatment groups. Results: Both groups showed a statistically significant difference for VAS and PSFS score (p<0.05). In comparison between two groups, more experimental group than control group statistically significant difference (p<0.05). Conclusion: There seems to be a positive effect on pain and function of frozen shoulder from using high intensity laser therapy.

Thermal Shock Stress Intensity Factor and Fracture Test (열충격 응력세기계수와 파괴실험)

  • 이강용;심관보
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.1
    • /
    • pp.130-137
    • /
    • 1990
  • Thermal shock stress intensity factor for an edge-cracked plate subjected to thermal shock is obtained from Bueckner's weight function method. It is shown that thermal shock stress intensity factor has maximum values with variation of time and crack length and that there is most dangerous crack length. By comparing thermal shock stress intensity factor with fracture toughness, the fracture time and critical temperature difference due to thermal shock are determined theoretically. Under constant thermal shock temperature difference, and increase of crack length is shown to increase fracture time. The theoretical fracture time is compared with experimental value measured by acoustic emission method with soda lime glass.