• Title/Summary/Keyword: Intelligent-PID

Search Result 202, Processing Time 0.046 seconds

Intelligent 2-DOF PID Control For Thermal Power Plant Using Immune Based Multiobjective

  • Kim, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1371-1376
    • /
    • 2003
  • In the thermal power plant, the main steam temperature is typically regulated by the fuel flow rate and the spray flow rate, and the reheater steam temperature is regulated by the gas recirculation flow rate. However, Strictly maintaining the steam temperature can be difficult due to heating value variation to the fuel source, time delay changes in the main steam temperature, the change of the dynamic characteristics in the reheater. Up to the present time, PID Controller has been used to operate this system. However, it is very difficult to achieve an optimal PID gain with no experience, since the gain of the PID controller has to be manually tuned by trial and error. This paper focuses on tuning of the 2-DOF PID Controller on the DCS for steam temperature control using immune based multiobjective approach. The stable range of a 2-DOF parameter for only this system could be found for the start-up procedure and this parameter could be used for the tuning problem. Therefore tuning technique of multiobjective based on immune network algorithms in this paper can be used effectively in tuning 2-DOF PID controllers.

  • PDF

Intelligent PID Controller Design Using Root-Locus Analysis for Systems with Parameter Uncertainties (불확실한 파라미터를 갖는 시스템을 위한 근궤적법을 이용한 지능형 PID 제어기 설계)

  • Shin, Young-Joo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.10
    • /
    • pp.67-76
    • /
    • 2008
  • In this research, a simple technique for designing PID controller, which guarantees robust stability for two-mass systems with parameter uncertainties as well as rigid-body behavior and zero steady-state error,is described. As well, such a PID controller is designed to mate two important frequencies, at which the given system is excited, very close so that an appropriate reference profile generated by using command shaping techniques can cover those two frequencies. Root-locus analysis. which shows traces of closed-loop poles for the given system, is used to design this PID controller. Finally, feedforward controller is added to improve tracking performance of the closed-loop system. Simulation for a system with a flexible mode and parameter uncertainties is executed to prove the feasibility of this technique.

Web Lateral Control of Cold Rolling Mill Systems Using a Robust PID Control (강인 PID 제어를 이용한 냉간압연 시스템의 웹 횡방향 제어)

  • Park, Chintac;Kim, In-Soo;Lee, Young-Jin;Kim, Jong-Shik;Lee, Man-Hyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.5
    • /
    • pp.373-384
    • /
    • 2002
  • This paper presents a robust PID controller design technique using the concept of model matching method in the frequency domain. To design the robust PID controller satisfying disturbance attenuation and robust tracking property for a reference input, first an H$\infty$ controller satisfying given performance is designed using the H$\infty$ control method. And then, the parameters(proportional, integral, and derivative gains) of the robust PID controller are determined using the model matching at frequency domain. The proposed technique is applied to a position controller design of the web. The simulation results show that the proposed robust PID controller satisfies disturbance attenuation and tracking property.

Performance/Robustness Improvement of i-PID with Two-Degree-of-Freedom Controller (2자유도를 가지는 지적 PID 제어기를 이용한 시스템의 성능향상)

  • Choe, Yeon-Wook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.6
    • /
    • pp.927-934
    • /
    • 2017
  • This paper is concerned with applicability of two-degree-of-freedom controllers to the recently suggested i-PID controllers, in which unknown parts of the plant are taken into account without any modeling procedure. First, i-PID controller with two-degree-of-freedom is applied to a specific model, called Anisochronic model, to confirm the usefulness of this method. Second, using the original examples of i-PID controllers, it is confirmed that performance/robustness of system are to be improved due to two-degree-of-freedom, especially when the input changes suddenly. It is seen that as the desired robustness increases the optimal value of two-degree-of-freedom parameter ${\alpha}_A$ would be negative. It is checked and verified that if this value was limited to 1 or less as is generally known, performance would be degraded.

Implementation of an Intelligent Controller with a DSP and an FPGA for Nonlinear Systems

  • Kim, Sung-Su;Jung, Seul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.575-580
    • /
    • 2003
  • In this paper, we develop a control hardware such as an FPGA based general purpose controller with a DSP board to solve nonlinear control problems. PID control algorithms are implemented in an FPGA and neural network control algorithms are implemented in a DSP board. PID controllers implemented on an FPGA was designed by using VHDL to achieve high performance and flexibility. By using high capacity of an FPGA, the additional hardware such as an encoder counter and a PWM generator, can be implemented in a single FPGA device. As a result, the noise and power dissipation problems can be minimized and the cost effectiveness can be achieved. In order to show the performance of the developed controller, it was tested for controlling nonlinear systems such as an inverted pendulum.

  • PDF

Fuzzy Logic Application to a Two-wheel Mobile Robot for Balancing Control Performance

  • Kim, Hyun-Wook;Jung, Seul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.12 no.2
    • /
    • pp.154-161
    • /
    • 2012
  • This article presents experimental studies of fuzzy logic application to control a two-wheel mobile robot(TWMR) system. The TWMR system is composed of two systems, an inverted pendulum system and a mobile robot system. Although linear controllers can stabilize the TWMR, fuzzy controllers are expected to have robustness to uncertainties so that the resulting performances are expected to be better. Nominal fuzzy rules are used to control balance and position of TWMR. Fuzzy logic is embedded on a DSP chip to control the TWMR. Balancing performances of the PID controller and the fuzzy controller under disturbances are compared through extensive experimental studies.

Path Following Control of Mobile Robot Using Lyapunov Techniques and PID Cntroller

  • Jin, Tae-Seok;Tack, Han-Ho
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.11 no.1
    • /
    • pp.49-53
    • /
    • 2011
  • Path following of the mobile robot is one research hot for the mobile robot navigation. For the control system of the wheeled mobile robot(WMR) being in nonhonolomic system and the complex relations among the control parameters, it is difficult to solve the problem based on traditional mathematics model. In this paper, we presents a simple and effective way of implementing an adaptive following controller based on the PID for mobile robot path following. The method uses a non-linear model of mobile robot kinematics and thus allows an accurate prediction of the future trajectories. The proposed controller has a parallel structure that consists of PID controller with a fixed gain. The control law is constructed on the basis of Lyapunov stability theory. Computer simulation for a differentially driven nonholonomic mobile robot is carried out in the velocity and orientation tracking control of the nonholonomic WMR. The simulation results of wheel type mobile robot platform are given to show the effectiveness of the proposed algorithm.

An Enhanced Technologies of Intelligent HVAC PID Controller by Parameter Tuning based on Machine Learning

  • Kim, Jee Hyun;Cho, Young Im
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.12
    • /
    • pp.27-34
    • /
    • 2017
  • Design of an intelligent controller for efficient control in smart building is one of the effective technologies to reduce energy consumption by reducing response time with keeping comfortable level for inhabitants. In this paper, we focus on how to find major parameters in order to enhance the ability of HVAC(heating, ventilation, air conditioning) PID controller. For the purpose of that, we use machine learning technologies for tuning HVAC devices. We show the simulation results to illustrate the behavioral relation of whole system and each control parameter while learning process.

The Design of Hybrid Fuzzy Controller Based on Parameter Estimation Mode Using Genetic Algorithms (유전자 알고리즘을 이용한 파라미터 추정모드기반 하이브리드 퍼지 제어기의 설계)

  • 이대근;오성권;장성환
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.05a
    • /
    • pp.228-231
    • /
    • 2000
  • A hybrid fuzzy controller by means of the genetic algorithms is presented. The control input for the system in the HFC is a convex combination of the FLC's output in transient state and PlD's output in steady state by a fuzzy variable. The HFC combined a PID controller with a fuzzy controller concurrently produces the better output performance than any other controller. A auto-tuning algorithms is presented to automatically improve the performance of hybrid fuzzy controller using genetic algorithms. The algorithms estimates automatical Iy the optimal values of scaling factors, PID parameters and membership function parameters of fuzzy control rules. Especially, in order to auto-tune scaling factors and PID parameters of HFC using GA three kinds of estimation modes are effectively utilized. The HFCs are applied to the second process with time-delay. Computer simulations are conducted at step input and the performances of systems are evaluated and also discussed in ITAE(Integral of the Time multiplied by the Absolute value of Error ) and other ways.

  • PDF

Fuzzy Control of Computer Automatic System with Color Matching and Dispensing Functions (칼라 맞춤 및 분배 기능을 가진 컴퓨터 자동화 시스템의 퍼지 제어)

  • 한일석;류상문;임태우;안태천
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.05a
    • /
    • pp.146-149
    • /
    • 2000
  • In this paper, Computer Colour Matching and Kitchen System (CCMKS) is developed on the basis of delphi package and one-chip processor with fuzzy-PID control. CCMKS will be widely used in the colour dyeing industry as an integrated colour matching and dispensing system which have more advantages than the conventional matching or dispensing system, when controlling the real dyeing processes. Delphi is utilized in making database and search/matching routes. The developed matching function reduces the search and matching time to about one third. One-chip processor is designed and manufactured for the distributed control of three-phase induction motors. Fuzzy-PID control is applied to the speed control of three-phase induction motors for a very precise weight of colour at CCMKS. The developed kitchen function decreases the dispensing time to about one twentieth. The experimental results show CCMKS has more excellent search time, more precise weight and much high fidelity than conventional colour matching or dispensing system, in the performance.

  • PDF