International Journal of Control, Automation, and Systems
/
v.3
no.4
/
pp.509-523
/
2005
We are developing a novel framework, PRIDE (PRediction In Dynamic Environments), to perform moving object prediction (MOP) for autonomous ground vehicles. The underlying concept is based upon a multi-resolutional, hierarchical approach which incorporates multiple prediction algorithms into a single, unifying framework. The lower levels of the framework utilize estimation-theoretic short-term predictions while the upper levels utilize a probabilistic prediction approach based on situation recognition with an underlying cost model. The estimation-theoretic short-term prediction is via an extended Kalman filter-based algorithm using sensor data to predict the future location of moving objects with an associated confidence measure. The proposed estimation-theoretic approach does not incorporate a priori knowledge such as road networks and traffic signage and assumes uninfluenced constant trajectory and is thus suited for short-term prediction in both on-road and off-road driving. In this article, we analyze the complementary role played by vehicle kinematic models in such short-term prediction of moving objects. In particular, the importance of vehicle process models and their effect on predicting the positions and orientations of moving objects for autonomous ground vehicle navigation are examined. We present results using field data obtained from different autonomous ground vehicles operating in outdoor environments.
The prediction of short-term traffic flow is the theoretical basis of intelligent transportation as well as the key technology in traffic flow induction systems. The research on short-term traffic flow prediction has showed the considerable social value. At present, the support vector regression (SVR) intelligent prediction model that is suitable for small samples has been applied in this domain. Aiming at parameter selection difficulty and prediction accuracy improvement, the artificial bee colony (ABC) is adopted in optimizing SVR parameters, which is referred to as the ABC-SVR algorithm in the paper. The simulation experiments are carried out by comparing the ABC-SVR algorithm with SVR algorithm, and the feasibility of the proposed ABC-SVR algorithm is verified by result analysis. Continuously, the simulation experiments are carried out by comparing the ABC-SVR algorithm with particle swarm optimization SVR (PSO-SVR) algorithm and genetic optimization SVR (GA-SVR) algorithm, and a better optimization effect has been attained by simulation experiments and verified by statistical test. Simultaneously, the simulation experiments are carried out by comparing the ABC-SVR algorithm and wavelet neural network time series (WNN-TS) algorithm, and the prediction accuracy of the proposed ABC-SVR algorithm is improved and satisfactory prediction effects have been obtained.
The Journal of the Korea institute of electronic communication sciences
/
v.16
no.5
/
pp.859-866
/
2021
Agricultural Photovoltaic power generation is a new model that installs solar power generation facilities on top of farmland. Through this, it is possible to increase farm household income by producing crops and electricity at the same time. Recently, various attempts have been made to utilize agricultural solar power generation. Agricultural photovoltaic power generation has a disadvantage in that maintenance is relatively difficult because it is installed on a relatively high structure unlike conventional photovoltaic power generation. To solve these problems, intelligent and efficient operation and diagnostic functions are required. In this paper, we discuss the design and implementation of a prediction and diagnosis system to collect and store the power output of agricultural solar power generation facilities and implement an intelligent prediction model. The proposed system predicts the amount of power generation based on the amount of solar power generation and environmental sensor data, determines whether there is an abnormality in the facility, calculates the aging degree of the facility and provides it to the user.
International Journal of Computer Science & Network Security
/
v.21
no.4
/
pp.65-74
/
2021
The rapid change in gold price is an issue of concern in the global economy and financial markets. Gold has been used as a means for trading and transaction around the world for long period of time and it plays an integral role in monetary, business, commercial and financial activities. More importantly, it is used as economic measure for the global economy and will continue to play an important economic vital role - both locally and globally. There has been an explosive growth in demand for efficient and effective scheme to predict gold price due its volatility and fluctuation. Hence, there is need for the development of gold price prediction scheme to assist and support investors, marketers, and financial institutions in making effective economic and monetary decisions. This paper primarily proposed an intelligent based system for predicting and characterizing the gold market trend. The simulation result shows that the proposed intelligent gold price scheme has been able to predict the gold price with high accuracy and precision, and ultimately it has significantly reduced the prediction error when compared to baseline neural network (NN).
As society develops, the demand for safety and security services increases. Developed nations such as the United States use advanced technology to lower crime rate and promote intelligent security services. First, this article examines intelligent systems that are used for monitoring and detecting crimes and dangerous situations. Recently, we have been studying technologies that enable preemptive responses through prediction of crime and hazardous situations. In this paper, we examine the cases of security services based on a crime/risk prediction model and explain the structure and major technologies of an intelligent security system. In addition, we propose a direction for technological development for achieving future security services.
With the launch of Artificial Intelligence(AI)-based intelligent products on the market, innovative changes are taking place not only in business but also in consumers' daily lives. Intelligent products have the potential to realize technology differentiation and increase market competitiveness through advanced functions of artificial intelligence. However, there is no new product development methodology that can sufficiently reflect the characteristics of artificial intelligence for the purpose of developing intelligent products with high market acceptance. This study proposes a KANO-QFD integrated model as a methodology for intelligent product development. As a specific example of the empirical analysis, the types of consumer requirements for hair loss prediction and treatment device were classified, and the relative importance and priority of engineering characteristics were derived to suggest the direction of intelligent medical product development. As a result of a survey of 130 consumers, accurate prediction of future hair loss progress, future hair loss and improved future after treatment realized and viewed on a smartphone, sophisticated design, and treatment using laser and LED combined light energy were realized as attractive quality factors among the KANO categories. As a result of the analysis based on House of Quality of QFD, learning data for hair loss diagnosis and prediction, micro camera resolution for scalp scan, hair loss type classification model, customized personal account management, and hair loss progress diagnosis model were derived. This study is significant in that it presented directions for the development of artificial intelligence-based intelligent medical product that were not previously preceded.
Journal of the Korean Institute of Intelligent Systems
/
v.11
no.4
/
pp.336-339
/
2001
The ozone forecasting systems have many problems because the mechanism of the ozone concentration is highly complex, nonlinear, and nonstationary. Especially, the performance of the prediction results in the high-level ozone concentration are not good. This paper describes the modeling method of the ozone prediction system using neuro-fuzzy approaches and fuzzy clustering methods. The dynamic polynomial neural network (DPNN) based upon a typical algorithm of GMDH (group method of data handling) is a useful method for data analysis, the identification of nonlinear complex systems, and prediction of dynamical systems.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
1998.03a
/
pp.67-70
/
1998
There were many cases to apply artificial intelligence to medicine. In this paper, we present the prediction model of the development of the NIDDM(noninsulin-dependent diabetes mellitus). It is not difficult that doctor diagnose patient as DM(diabetes mellitus). However NIDDM is usually developmented later on 40 years old and symptom appeares gradually. So screening test or prediction model is needed absolutely. Our model predicts development of NIDDM with still normal data 2 year ago. Prediction models developed are both MLP(multilayer perceptron) with backpropagation training and RBFN(radial basis function network). Performance of both models were evaluated with likelihood ratio. MLP was about two and RBFN was about three. We expect that models developed can prevent development of DM and utilize normal data.
International Journal of Fuzzy Logic and Intelligent Systems
/
v.9
no.4
/
pp.327-332
/
2009
This paper proposes a method to improve the accuracy of a short-term electrical load forecasting (STLF) system based on neuro-fuzzy models. The proposed method compensates load forecasts based on the error obtained during the previous prediction. The basic idea behind this approach is that the error of the current prediction is highly correlated with that of the previous prediction. This simple compensation scheme using error information drastically improves the performance of the STLF based on neuro-fuzzy models. The viability of the proposed method is demonstrated through the simulation studies performed on the load data collected by Korea Electric Power Corporation (KEPCO) in 1996 and 1997.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
1993.06a
/
pp.1013-1016
/
1993
This paper describes a new type of neuron model, the inputs of which are interfered with one another. It has a high mapping ability with only single unit. The learning speed is considerably improved compared with the conventional linear type neural networks. The proposed neuron model was successfully applied to the prediction problem of chaotic time series signal.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.