Fifth IFSA World Congress (1993), 1013-1016

An Input-correlated Neuron Model and Its Learning Characteristics

Takeshi Yamakawa*', Toru Aonishi**, Eiji Uchino*’ and Tsutomu Miki*t

* Department of Control Engineering and Science
Kyushu Institute of Technology, lizuka, Fukuoka 820, Japan

** Department of Biophysical Engineering
Osaka University, Toyonaka, Osaka 560, Japan

Abstract This paper describes a new type of neu-
ron model, the inputs of which are interfered with
one another. It has a high mapping ability with only
single unit. The learning speed is considerably im-
proved compared with the conventional linear type
neural networks. The proposed neuron model was
successfully applied to the prediction problem of
chaotic time series signal.
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1. Introduction

The multilayer neural networks have been
applied to a number of problems in many areas
other than an engineering area. However, there are
some problems such as: (i) there are no reasonable
design policies for the network structures, e.g.
number of layers, number of units in each hidden
layer, and so on, (ii) it takes much time for learning
with use of error back-propagation type algorithm,
(iii) the gradient descent scheme can become stuck
in local minima of the error function, and so on.

The purpose of this paper is to propose a new
type of neuron model, i.e. input-correlated neuron,
which has a high mapping ability with only single
unit. It is proved mathematically that there exist no
local minima for the single-layer network of the
proposed neurons (i.e. with no hidden layers). The
computer simulations tell that the learning speed is
considerably improved compared with the conven-
tional linear type neural networks. The single unit
of the proposed neuron model can solve the XOR
problem or more complex problems with linearly
nonseparable patterns, which are impossible with
use of the conventional linear type neural networks
with no hidden layers.

TThe authors are also with the Fuzzy Logic
Systems Institute (FLSI), lizuka, Fukuoka 820,
Japan.

Finally, the proposed input-correlated neuron
model has been successfully applied to the predic-
tion problem of future time history of signal, which
shows chaotic behavior. The computer simulation
results are quite well and promising.

2. Structure of Input-correlated Neuron
Model

We consider here the following neuron model
based on the Taylor's expansion theorem:
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where x = [xq, X1,..., %,J7 € R™! is the input signal
vector, y € R is the output, and W, ,, is a weight
(parameter). x is a bias input and permanently set
to 1. Eq.(1) can describe the arbitrary polynomial
of order p. Without loss of generality, we assume:
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Fig.1. Structure of an input-correlated neuron
model.
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for all the combinations of (i1,i2,....ip).
If it is confined up to the second order poly-
nomials, Eq.(1) has the following quadratic form:

y = xTWx, (3)

where W is the weight matrix that is symmetrical.
The structure of this input-correlated neuron model
is shown in Fig.1.

3. Learning Algorithm of Input-correlated
Neuron

Fig.2 shows the general multilayer feedfor-
ward network of the proposed neurons. The input-
output relation for the k-th neuron in layer » is de-
scribed by:
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where M, is the number of units in layer #, Wi?,_’;‘,-p

is the weight assigned, and y{ is the output of the k-
th neuron in layer n.
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Fig.2. Multilayer feedforward network of the input-
correlated neurons.

Here we define the error to be minimized over
the training cycle as follows:
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where yl(q) = [y,’(q),...,yj,l(q)]T is the output of the
network, and 5(9) = [1(@)-Im(@] (g=1,...r) is
the training data.

The gradient descent scheme [1] is employed
here to reduce the error V through the adjustment
of weight W/ %, . That is, the dynamics of weight is
described by:

awik, _ av
dt Iwnrk
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(6)

Now, the derivative of V with respect to Wi},,‘,kip in
layer 1 becomes:
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Then, the second term of the right hand side of
Eq.(7) is calculated from Eq.(4) as:

]
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Now, by putting:

ri(@) = 3v(@)/Ay(@) = Yi@Ti(9), €))

thus one obtains:

ank 2 ré@yi@ - i) (10)

In the similar manner, the derivative of V with re-

spect to W' ", in layer n becomes:
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Then, by putting:

rig) =M@ _

av(q) ayl- (q) 12
g (12

5 ayrlg) v

one finally obtains:
May
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with considerations of r["!(g) = dv(¢)/dy["!(g) in
layer n-1 and Eqs.(2) and (4). Furthermore, one
obtains from Eq.(4):

a)’k(i) = y*l(q) - yI*U(g). (14)
oW/

{..dp
Thus, one finally obtains:

2 rH@YI () - yE ). (15)
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Then, the learning algorithm of weight W/ * 3, be-
comes as follows:

dW‘n k‘ r
idp Z rE@YE(g) - ‘J’i?,ﬂ(q)’ (16)
dt 7=

where ri(q) is determined recursively by using
Eqgs.(9) and (13).

Eq.(16) can be transformed into the following
discrete form:

Wik (1) = WK () - 52 i@y Q) -y @),

g=1
amn
where £ is called a learning rate factor that affects
the speed of learning. In case the variation of
weight is small, the following approximated ex-
pression can be employed:

Wik (eel)y = Wik (D)
- ErP @Y g(D) -y (g(1) (18)

with g(T)=1+1-ir (ir<7<(i+1)r). In order to accel-
erate the convergence of the error back-propaga-
tion learning algorithm, the momentum method is
often used in the following form:

AW ,,,(1'+1)-- adAW ]! ,P(r)
- Erpg(y (D) - I (g(D), (19)

Wik (tel) = Wi (D) + AWl (D), (20)

where AW,-;‘,_’,‘I-,,(T) is the weight increment and «a is a
positive momentum factor that suppresses oscilla-
tion and improves the learning performance [1,2].

Page limitations preclude an inclusion of the
proof that there exist no local minima for the sin-
gle-layer network of the proposed neurons (i.e.
with no hidden layers).

4. Application to Prediction of Chaotic
Behavior

In order to verify the effectiveness of the pro-
posed neuron model, application is made to the
prediction problem of the time series data [3,4].
The prediction of the time series data is very im-
portant in many areas, e.g. signal processing, me-
teorology, economics, and so on. A time series sig-
nal through delay elements is applied to the single
unit of proposed neuron as shown in Fig.3. This
system can learn the mapping from
{St> St-15e0» St-m+1} 0 {841} This corresponds to, so to
speak, the identification of the nonlinear autore-
gressive model by neural network. Once the learn-
ing has been completed, it can achieve the one step
ahead prediction of its time series signal. If we feed

the output of the neuron directly back to the input
of the delay chain, the far future prediction of time
series signal can be achieved based on the time se-
ries data up to the present.
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Fig.3. Structure of single unit of neuron which
achieves the prediction of time series signal.
z-l is the unity delay element.

Here we employ the following chaos dynamical
system [5] as the target model to be identified:

511 = (1+ab)s, - bsy,, @2n
Vi1 = (1-b)y, + bS,2 (22)

with a=0.45 and b=1.9. The problem here is to
predict the time history of s, by using the proposed
neuron model.

First we have to determine the followings: (i)
the order of polynomials, (ii) the number of delay
elements. As for (i), we employ the 3rd order
polynomials. Then as for (ii), we follow the
Takens' theorem [6], i.e. we employ the embedding
dimension m as the number of delay elements.

The embedding dimension is determined by the
following procedure [7]. First the correlation inte-
gration:

Clr) = -1_2 2 H(rs7-s7) (23)

1-1 f=1

is evaluated by using the time series data
S = (84, Si-1yee-s Siome1], Where H(x) (H(x)=1 when
x20; H(x)=0 when x<0) is the Heaviside function,
and N is the number of data. The correlation di-
mension D{" of the attractor is defined by:

Dy = lim log Cm(r) (24)
r~»0  logr

If the system is deterministic, D" approaches to a
constant value as m increases. This constant value is
the dimension of the attractor, and m which gives
that value is the embedding dimension. Fig.4 shows
the correlation integration and the dimension of the
attractor for the chaotic signal s, We can see from
this figure that the dimension of the attractor is
about 1.6 and its embedding dimension is about 5.
Therefore, the neuron model with 5 delay elements
is employed in this experiment. Fig.5 shows the
prediction results of time history of s, in Eq.(21) by
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using the proposed neuron model. The learning is
achieved by Eqs.(19) and (20), and the time series
data s, from ¢=0 to =204 was used for learning.
The momentum factor a is 0.5 and the leamning rate
factor £ is 0.005. In the prediction procedure after
t=205 (i.e. after learning is completed), the output
of the neuron was directly fed back to the input of
the delay chain.
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Fig.4. The correlation integration and the dimen-
sion of the chaotic signal s,.
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Fig.5. Prediction results of time history of s, by
using the single unit of proposed neuron.
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Fig.6. Prediction results of time history of s, by
using the conventional neural network.
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Fig.7. RMS error versus running time for the sin-
gle unit of the proposed neuron and the
conventional neural network.

The prediction results by the conventional neu-
ral network (4-layer network, 5 units for input and
hidden layers, 1 unit for output layer, error back-
propagation leaming with the momentum factor 0.5
and the learning rate factor 0.1) are shown in Fig.6.
The difference of the prediction performance is
clear. The RMS (Root Mean Square) error versus
running time for the single unit of the proposed
neuron and the conventional neural network is
shown in Fig.7 (this experiment was achieved on a
personal computer with coprocessor),

5. Conclusions

In this paper, the input-correlated neuron
model has been proposed. The back-propagation
type learning algorithm has been derived, and it is
proved that there exist no local minima for the sin-
gle-layer network of the proposed neurons. It has
been shown by the computer simulations that the
learning speed is very fast compared with the con-
ventional neural networks. The prediction of the
future time history of chaotic signal has been
achieved only by use of the single unit of the pro-
posed neuron. As the proposed neuron has the high
mapping ability, it could be applied to complex
problems in many areas.
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