Lee Hyong-Euk;Kim Yong-Hwi;Park Kwang-Hyun;Kim Yong-Su;Jung Jin-Woo;Cho Joonmyun;Kim MinGyoung;Bien Z. Zenn
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2005.11a
/
pp.175-178
/
2005
스마트 홈과 같은 유비쿼터스 환경은 다양한 센서 및 제어 네트워크가 밀집되어 있는 복잡한 시스템이다. 본 논문에서는 이러한 환경하에서 복잡한 인터페이스의 사용에 대한 사용자의 인지 부담(cognitive load)를 줄이고 개인화된(personalized) 서비스를 자율적으로 제공하기 위한 사용자 행동 패턴 선호도 학습 기법을 제안한다. 이를 위해 지식 발견(Knowledge Discovery)을 위한 평생 학습(life-long learning)의 관점에서 퍼지 귀납(Fuzzy Inductive)학습 방법론을 제안하며, 이것은 수치 데이터로부터 입력 공간에 대한 효율적인 퍼지 분할(fuzzy partition)을 얻어내고 일관성있는(consisitent) 퍼지 상관 룰(fuzzy association rule)을 얻어내도록 한다.
유비쿼터스 컴퓨팅의 핵심은 네트워크 환경에 대한 고 가용성이라 할 수 있다. 이러한 사실은 사용자 컨텍스트(Context)가 반영된 서비스를 제공하기 위한 필수조건이 이미 갖추어져 있다는 것을 시사한다. 지금까지 상황인지(Context-Aware) 서비스를 위한 여러 응용들이 제시되어 왔지만, 동적으로 변화하는, 즉 예측하기 어려운 환경을 충분히 반영할 만큼의 유연성을 제공하지 못했다. 왜냐하면, 응용 태스크 시나리오가 시작단계부터 이미 정해져 있었기 때문이다. 여기에, 본 고는 평생동안 개인화된 태스크를 동적으로 생성, 제공할 수 있는 멀티 에이전트 시스템 구조를 제안하고자 한다. 평생 개인화 태스크(Life Long Personalized Task)는 끊임없이 변화하는 사용자의 행동패턴을 반영할 수 있도록, 동적으로 생성, 제공되는 태스크를 의미한다. 이는 태스크 시나리오가 컴파일 타임에 이미 결정되지 않고, 실행 시간 중에 자동으로 생성된다는 것을 의미한다. 이러한 유연성은 평생학습 엔진(Life Long Learning Engine)을 활용함으로써 가능하다. 이 엔진은 사용자의 행동패턴을 학습하며, 결과적으로 사용자 행동패턴 규칙들을 생성한다.
Journal of Korea Society of Digital Industry and Information Management
/
v.11
no.3
/
pp.21-29
/
2015
The Internet of Things (IoT) is an Infrastructure which allows to connect with each device in physical world through the Internet. Thus IoT enables to provide meahup services or intelligent services to human user using collected data from those devices. Due to these advantages, IoT is used in divers service domains such as traffic, distribution, healthcare, and smart city. However, current IoT provides restricted services because it only supports monitor and control devices according to collected data from the devices. To resolve this problem, we propose a design and implementation of personalized IoT service base on service orchestration. The proposed service allows to discover specific services and then to combine the services according to a user location. To this end, we develop a service ontology to interpret user information according to meanings and smartphone web app to use the IoT service by human user. We also develop a service platform to work with external IoT platform. Finally, to show feasibility, we evaluate the proposed system via study.
In this paper, we propose a new method for collaborative filtering (CF)-based recommender systems. Traditional CF-based recommendation algorithms have applied constant settings such as a reference group (neighborhood) size and a significance level to all users. In this paper we develop a new method that identifies optimal personalized settings for each user and applies them to generating recommendations for individual users. Personalized parameters are identified through iterative simulations with 'training' and 'verification' datasets. The method is compared with traditional 'constant settings' methods using Netflix data. The results show that the new method outperforms traditional, ordinary CF. Implications and future research directions are also discussed.
The Journal of Korean Association of Computer Education
/
v.7
no.6
/
pp.117-128
/
2004
Compared with traditional face-to-face instruction, online learning causes learners to experience more severe feeling of isolation and results in higher dropout rate. This is due to the lack of interaction, sense of belonging, membership, interdependency, cooperation among members and social environment that enables persistence in online learning. Therefore, it is very important for grouping e-learning community to lower the dropout rate and eliminate feeling of isolation. In this paper, the research has been done on the inclination test list to be applied for grouping the desirable learning community. And on the basis of this research, the grouping system for e-learning community(GSE) based on intelligent multi agents for an inclination test using homogeneous and heterogeneous items has been developed. GSE system has such properties that construct a personalized user profile by an agent, and then make groupings according to users' inclination. When this system was evaluated, about 88% of learners were satisfied, and they wanted the group not to be disorganized but to be maintained.
Park, Won-Ik;Lee, Yong-Dae;Choe, Hwan-Su;Gang, Seon-Hui;Jang, Seo-Yun;Park, Jong-Hyeon;Kim, Yeong-Guk;Gang, Ji-Hun
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2007.11a
/
pp.272-275
/
2007
유비쿼터스 환경은 보이지 않는 수많은 장치들과 소프트웨어들이 서로 연결되어 각각의 사용자들에게 편리한 서비스를 제공한다. 이러한 서비스를 제공 받기 위해서는 사용자와 서비스간의 매개체 역할을 하는 모바일 디바이스가 필요하다. 하지만 자원이 제한적인 모바일 디바이스의 특성상 다양한 서비스를 이용할 수는 없다. 따라서 본 논문에서는 사용자의 프로파일을 고려한 사용자 맞춤 차원 공유 시스템을 개발하여 주변의 다양한 자원을 실시간으로 공유 할 수 있도록 함으로써 모바일 디바이스의 제한적인 리소스 문제를 해결 하고자한다. 본 논문에서는 테스트 시나리오를 이용하여 제안하는 사용자 맞춤 자원 공유 시스템을 검증한다.
International Journal of Fuzzy Logic and Intelligent Systems
/
v.4
no.1
/
pp.29-33
/
2004
I propose a personalized digital library system (PDLS) based on an advanced distributed agent platform. The new platform is developed by improving the DECAF (Distributed Environment-Centered Agent Framework) which is one of the conventional distributed agent development toolkits. Also, a mobile ORB (Object Request Broker), Voyager, and a new multi agent negotiation algorithm are adopted to develop the advanced platform. The new platform is for mobile multi agents as well as the distributed environment, whereas the DECAF is for the distributed and non-mobile environment. From the results of the simulation the searched time of PDLS is lower, as the numbers of servers and agents are increased. And the user satisfaction is four times greater than the conventional client-server model. Therefore, the new platform has some optimality and higher performance in the distributed mobile environment.
Journal of the Korean Institute of Intelligent Systems
/
v.19
no.2
/
pp.242-247
/
2009
Recently an intelligent system is developed for the service what users want not a passive system which just answered user's request. This intelligent system is used for personalized recommendation system and representative techniques are content-based and collaborative filtering. In this study, we propose a prediction system which is based on the techniques of recommendation system using a collaborative filtering and a fuzzy system to solve the collaborative filtering problems. In order to verify the prediction system, we used the data that is user's rating about movies. We predicted the user's rating using this data. The accuracy of this prediction system is determined by computing the RMSE(root mean square error) of the system's prediction against the actual rating about the each movie and is compared with the existing system. Thus, this prediction system can be applied to base technology of recommendation system and also recommendation of multimedia such as music and books.
Journal of the Korea Institute of Information and Communication Engineering
/
v.20
no.8
/
pp.1494-1502
/
2016
With the increasing availability of medical sensors and Internet of Things(IoT) devices for personal use, considering the interaction with users, it is planned to add intelligent function design to the fashionable jewelry, and develop composite multi-function intelligent jewelry through sensors identification. By means of IoT technology, while possessing communication function of intelligent jewelry, the function of intelligent jewelry can be expanded to the linkage network. In order to rapidly manage the mass data produced by intelligent jewelry sensors based on IoT, an intelligent jewelry system for health management is designed and an ontology model of intelligent jewelry system based on IoT is worked out. After the state of the services through the smart phone application is shown. The application provides a personalized service to the user and to determine the risk to show the guide lines according to the disease.
Personalized reminder systems have to identify the user's current needs dynamically and proactively based on the user's current context. However, need identification methodologies and their feasible architectures for personalized reminder systems have been so far rare. Hence, this paper aims to propose a proactive need awaring mechanism by applying agent, semantic web technologies and RFID-based context subsystem for a personalized reminder system which is one of the supporting systems for a robust ubiquitous service support environment. RescorlaWagner model is adopted as an underlying need awaring theory. We have created a prototype system called NAMA(Need Aware Multi-Agent)-RFID, to demonstrate the feasibility of the methodology and of the mobile settings framework that we propose in this paper. NAMA considers the context, user profile with preferences, and information about currently available services, to discover the user's current needs and then link the user to a set of services, which are implemented as web services. Moreover, to test if the proposed system works in terms of scalability, a simulation was performed and the results are described.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.