DOI QR코드

DOI QR Code

The Effect of the Personalized Settings for CF-Based Recommender Systems

CF 기반 추천시스템에서 개인화된 세팅의 효과

  • Im, Il (School of Business, Yonsei University) ;
  • Kim, Byung-Ho (School of Business, Yonsei University)
  • 임일 (연세대학교 경영대학) ;
  • 김병호 (연세대학교 경영대학)
  • Received : 2012.06.09
  • Accepted : 2012.06.19
  • Published : 2012.06.30

Abstract

In this paper, we propose a new method for collaborative filtering (CF)-based recommender systems. Traditional CF-based recommendation algorithms have applied constant settings such as a reference group (neighborhood) size and a significance level to all users. In this paper we develop a new method that identifies optimal personalized settings for each user and applies them to generating recommendations for individual users. Personalized parameters are identified through iterative simulations with 'training' and 'verification' datasets. The method is compared with traditional 'constant settings' methods using Netflix data. The results show that the new method outperforms traditional, ordinary CF. Implications and future research directions are also discussed.

논문에서는 협업필터링(collaborative filtering : CF) 기반한 추천시스템의 정확도를 높일 수 있는 방법을 제안하고 그 효과를 분석한다. 일반적인 CF기반 추천시스템에서는 시스템 세팅(참조집단 크기, 유의도 수준 등)을 한 가지 정해서 모든 경우에 대해서 동일하게 적용한다. 본 논문에서는 개별 사용자의 특성에 따라 이러한 세팅을 최적화 해서 개별적으로 적용하는 방법을 개발하였다. 이런 개인화된 세팅의 효과를 측정하기 위해서 Netflix의 자료를 사용해서 일반적인 추천시스템과 추천 정확도를 비교하였다. 분석 결과, 동일한 세팅을 적용하는 일반적인 추천시스템에 비해서 개인화된 세팅을 적용한 경우 정확도가 월등히 향상됨을 확인하였다. 이 결과의 시사점과 함께 미래 연구의 방향에 대해서도 논의한다.

Keywords

References

  1. Bell, R., Koren, Y., and Volinsky, C., "Chasing $1,000,000 : How we won the Neflix progressive prize", Statistical Computing and Graphics, Vol.18, No.2(2007), 4-12.
  2. Breese, J. S., Heckerman, D., and Kadie, C., Empirical analysis of predictive algorithms for collaborative filtering, in Fourteenth Conference on Uncertainty in Artificial Intelligence. Madison, WI, 1998.
  3. Burke, R., Semantic ratings and heuristic similarity for collaborative filtering, in AAAI Technical Report WS-00-04, (2000), 14-20.
  4. Cho, Y. and Bang, J., "Applying centrality analysis to solve the cold-start and sparsity problems in collaborative filtering", Journal of Intelligence and Information Systems, Vol.17, No.3(2011), 99-114.
  5. Christakou, C. and Stafylopatis, A., A hybrid movie recommender system based on neural networks, in International Conference on Intelligent Systems Design and Applications (ISDA'05). IEEE : Wroclaw, Poland, 2005.
  6. Herlocker, J. L., Konstan, J. A., Borchers, A., and Riedl, J., An algorithmic framework for performing collaborative filtering, in Conference on Research and Development in Information Retrieval. ACM Press : New York, NY, 1999.
  7. Im, I. and Hars, A., "Does a one-size recommendation system fit all? : The effectiveness of collaborative filtering based recommendation systems across different domains and search modes", ACM Transactions on Information Systems, Vol.26, No.1(2007).
  8. Konstan, J. A., Miller, B. N., Maltz, D., Herlocker, J. L., Good, N., and Riedl, J., "GroupLens : Applying collaborative filtering to Usenet news", Communications of the ACM, Vol.40, No.3(1997), 77-87. https://doi.org/10.1145/245108.245126
  9. Lee, T. Q., Park, Y., and Park, Y.-T., A similarity measure for collaborative filtering with implicit feedback, in ICIC, D.-S. Huang, L. Heutte, and Loog M. Springer-Verlag : Qingdao, China, (2007), 385-397.
  10. Park, D. H., Kim, H. K., Choi, I. Y., and Kim, J. K., "A literature review and classification of recommender systems on academic journals", Journal of Intelligence and Information Systems, Vol.17, No.1(2011), 139-152.
  11. Riedl, J., Combining collaborative filtering with personal agents for better recommendations, in Conference of the American Association of Artificial Intelligence. Orlando, FL, 1999.
  12. Schafer, J. B., Konstan, J. A., and Riedl, J., Metarecommendation systems : User-controlled integration of diverse recommendations, in CIKMʼ02. ACM : McLean, Virginia, USA, 2002.
  13. Shahabi, C. and Chen, Y.-S., "An adaptive recommendation system without explicit acquisition of user relevance feedback", Distributed and Parallel Databases, Vol.14(2003), 173- 192. https://doi.org/10.1023/A:1024888710505
  14. Xiao, B. and Benbasat, I., "E-commerce product recommendation agents : Use, characteristics, and impact", MIS Quarterly, Vol.31, No.1 (2007), 137-209. https://doi.org/10.2307/25148784

Cited by

  1. Recommending Talks at International Research Conferences vol.18, pp.3, 2012, https://doi.org/10.13088/jiis.2012.18.3.013
  2. Improving Neighborhood-based CF Systems : Towards More Accurate and Diverse Recommendations vol.18, pp.3, 2012, https://doi.org/10.13088/jiis.2012.18.3.119
  3. 추천 시스템의 성능 안정성을 위한 예측적 군집화 기반 협업 필터링 기법 vol.21, pp.1, 2012, https://doi.org/10.13088/jiis.2015.21.1.119