Grouping System for e-Learning Community(GSE): based on Intelligent Personalized Agent

온라인 학습공동체 그룹핑 시스템 개발: 지능적 에이전트 활용

  • 김명숙 (이화여자대학교 교육대학원 컴퓨터교육전공) ;
  • 조영임 (평택대학교 정보과학부 컴퓨터과학전공)
  • Published : 2004.11.30

Abstract

Compared with traditional face-to-face instruction, online learning causes learners to experience more severe feeling of isolation and results in higher dropout rate. This is due to the lack of interaction, sense of belonging, membership, interdependency, cooperation among members and social environment that enables persistence in online learning. Therefore, it is very important for grouping e-learning community to lower the dropout rate and eliminate feeling of isolation. In this paper, the research has been done on the inclination test list to be applied for grouping the desirable learning community. And on the basis of this research, the grouping system for e-learning community(GSE) based on intelligent multi agents for an inclination test using homogeneous and heterogeneous items has been developed. GSE system has such properties that construct a personalized user profile by an agent, and then make groupings according to users' inclination. When this system was evaluated, about 88% of learners were satisfied, and they wanted the group not to be disorganized but to be maintained.

전통적인 면대면 수업에 비하여 온라인 학습은 학습자에게 더 심한 고립감을 유발하며, 또한 높은 중도 탈락률을 보인다. 이러한 현상은 온라인 학습에서 학습자 간의 상호작용, 소속감, 상호의존성, 상호유대감, 지속적 학습을 가능하게 하는 사회적 환경의 부족함에서 기인한다. 그러므로 e-learning 공동체에서는 중도 탈락률을 낮추고 학습자의 고립감을 해소하도록 하는 것이 매우 중요하다. 따라서 본 논문에서는, 바람직한 학습공동체 형성을 위하여 적용될 취향검사 항목에 대한 연구를 수행하였으며, 이를 바탕으로 온라인상에서 취향검사의 동질성과 다양성을 결합한 지능적 멀티에이전트 기법에 의한 학습공동체 e-learning 그룹핑 시스템(GSE)을 개발하였다. GSE 시스템은 에이전트에 의해 개인화된 사용자 프로파일을 구축하여 사용자 취향에 따른 그룹핑을 자동적으로 수행하는 것이 특징이다. 이 시스템을 실제 테스트해 본 결과, 학습자들의 약 88%가 만족함을 나타냈으며 그룹이 계속 유지되거나 해체되지 않기를 원하는 것으로 나타났다.

Keywords