• 제목/요약/키워드: Intelligent Learning

검색결과 1,923건 처리시간 0.023초

신경회로망을 이용한 3관절 로봇 손가락의 역기구학 (Inverse Kinematics of Robot Fingers with Three Joints Using Neural Network)

  • 김병호
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국지능시스템학회 2007년도 추계학술대회 학술발표 논문집
    • /
    • pp.159-162
    • /
    • 2007
  • The inverse kinematics problem in robotics is an essential work for grasping and manipulation tasks by robotic and humanoid hands. In this paper, an intelligent neural learning scheme for solving such inverse kinematics of humanoid fingers is presented. Specifically, a multi-layered neural network is utilized for effective inverse kinematics, where a dynamic neural learning algorithm is employed. Also, a bio-mimetic feature of general human fingers is incorporated to the learning scheme. The usefulness of the proposed approach is verified by simulations.

  • PDF

강화학습과 감정모델 기반의 지능적인 가상 캐릭터의 구현 (Implementation of Intelligent Virtual Character Based on Reinforcement Learning and Emotion Model)

  • 우종하;박정은;오경환
    • 한국지능시스템학회논문지
    • /
    • 제16권3호
    • /
    • pp.259-265
    • /
    • 2006
  • 학습과 감정은 지능형 시스템을 구현하는데 있어 가장 중요한 요소이다. 본 논문에서는 강화학습을 이용하여 사용자와 상호작용을 하면서 학습을 수행하고 내부적인 감정모델을 가지고 있는 지능적인 가상 캐릭터를 구현하였다. 가상 캐릭터는 여러 가지 사물들로 이루어진 3D의 가상 환경 내에서 내부상태에 의해 자율적으로 동작하며, 또한 사용자는 가상 캐릭터에게 반복적인 명령을 통해 원하는 행동을 학습시킬 수 있다. 이러한 명령은 인공신경망을 사용하여 마우스의 제스처를 인식하여 수행할 수 있고 감정의 표현을 위해 Emotion-Mood-Personality 모델을 새로 제안하였다. 그리고 실험을 통해 사용자와 상호작용을 통한 감정의 변화를 살펴보았고 가상 캐릭터의 훈련에 따른 학습이 올바르게 수행되는 것을 확인하였다.

Frequentist and Bayesian Learning Approaches to Artificial Intelligence

  • Jun, Sunghae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제16권2호
    • /
    • pp.111-118
    • /
    • 2016
  • Artificial intelligence (AI) is making computer systems intelligent to do right thing. The AI is used today in a variety of fields, such as journalism, medical, industry as well as entertainment. The impact of AI is becoming larger day after day. In general, the AI system has to lead the optimal decision under uncertainty. But it is difficult for the AI system can derive the best conclusion. In addition, we have a trouble to represent the intelligent capacity of AI in numeric values. Statistics has the ability to quantify the uncertainty by two approaches of frequentist and Bayesian. So in this paper, we propose a methodology of the connection between statistics and AI efficiently. We compute a fixed value for estimating the population parameter using the frequentist learning. Also we find a probability distribution to estimate the parameter of conceptual population using Bayesian learning. To show how our proposed research could be applied to practical domain, we collect the patent big data related to Apple company, and we make the AI more intelligent to understand Apple's technology.

개인 맞춤형 수학 학습을 위한 인공지능 교육시스템의 기능과 적용 사례 분석 (Analysis of functions and applications of intelligent tutoring system for personalized adaptive learning in mathematics)

  • 성지현
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제62권3호
    • /
    • pp.303-326
    • /
    • 2023
  • 수학은 계통성이 강한 학문으로 이전 단계에서의 학습 결손이 다음 학습에 큰 영향을 주기 때문에 학생들의 학습이 잘 이루어졌는지 수시로 확인하고, 즉각적으로 피드백을 제공해 주는 것이 필요하며, 이를 위해 수학교육에서 인공지능 교육시스템(ITS)을 활용할 수 있다. 이에 본 연구에서는 개인 맞춤형 수학 학습을 실행하기 위해 적용될 수 있는 인공지능 교육시스템의 기능이 무엇인지 살펴보고, 이를 실제로 적용해 본 결과를 분석하여 인공지능 교육시스템을 활용한 개인 맞춤형 수학 학습의 효과성을 구체적으로 살펴보는 것을 목적으로 하였다. 이를 위해 개인 맞춤형 학습과 수학교육에서 인공지능이 활용된 선행연구 내용을 분석하여 개인 맞춤형 수학 학습을 위한 인공지능 교육시스템의 기능을 추출하고, 이것을 반영한 학습 및 수업을 설계하여 초등학교 5학년 학생들에게 약 3개월 간 적용해 본 결과를 분석하였다. 그 결과, 개인 맞춤형 수학 학습을 위해 활용될 수 있는 인공지능 교육시스템의 기능은 크게 진단 및 평가, 분석 및 예측, 피드백 및 콘텐츠 제공으로 나눌 수 있었다. 또한 이러한 기능을 반영한 학습 설계를 초등학생들에게 적용한 결과, 개인 맞춤형 수학 학습에 인공지능 교육시스템이 어떻게 효과적으로 활용될 수 있는지에 대한 시사점을 얻었다. 그리고 앞으로 인공지능 교육시스템을 활용한 개인 맞춤형 수학 학습이 더욱 효과적으로 이루어질 수 있기 위해 더 정교한 기술과 자료 개발이 필요하다는 점을 제언하였다.

지능형 교육 시스템 (Smart Education System)

  • 홍유식
    • 한국인터넷방송통신학회논문지
    • /
    • 제13권2호
    • /
    • pp.255-260
    • /
    • 2013
  • 요즈음, 지능형 교육 시스템은 자기 주도적 학습 기능을 이용한 연구가 진행되고 있다. 웹 기술 기반 온라인 가상대학에 접속하면, 온라인 강의를 언제 어디서나 공부할 수 있다. 지능형 학습 시스템을 구현하기 위해서는, 취약과목과 못하는 과목을 실시간으로 판단하는 기능이 필요하다. 이러한 문제를 해결하기 위해서, 수준별 학습 능력과 보안 알고리즘을 모의실험 하였다. 뿐만 아니라, 본 논문에서는 지능형 교육시스템을 구현하기위해서, QR 코드 및 지능형 교육 학습 시스템을 제안 하였다.

Avoiding collaborative paradox in multi-agent reinforcement learning

  • Kim, Hyunseok;Kim, Hyunseok;Lee, Donghun;Jang, Ingook
    • ETRI Journal
    • /
    • 제43권6호
    • /
    • pp.1004-1012
    • /
    • 2021
  • The collaboration productively interacting between multi-agents has become an emerging issue in real-world applications. In reinforcement learning, multi-agent environments present challenges beyond tractable issues in single-agent settings. This collaborative environment has the following highly complex attributes: sparse rewards for task completion, limited communications between each other, and only partial observations. In particular, adjustments in an agent's action policy result in a nonstationary environment from the other agent's perspective, which causes high variance in the learned policies and prevents the direct use of reinforcement learning approaches. Unexpected social loafing caused by high dispersion makes it difficult for all agents to succeed in collaborative tasks. Therefore, we address a paradox caused by the social loafing to significantly reduce total returns after a certain timestep of multi-agent reinforcement learning. We further demonstrate that the collaborative paradox in multi-agent environments can be avoided by our proposed effective early stop method leveraging a metric for social loafing.

Particle Swarm Optimization based on Vector Gaussian Learning

  • Zhao, Jia;Lv, Li;Wang, Hui;Sun, Hui;Wu, Runxiu;Nie, Jugen;Xie, Zhifeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권4호
    • /
    • pp.2038-2057
    • /
    • 2017
  • Gaussian learning is a new technology in the computational intelligence area. However, this technology weakens the learning ability of a particle swarm and achieves a lack of diversity. Thus, this paper proposes a vector Gaussian learning strategy and presents an effective approach, named particle swarm optimization based on vector Gaussian learning. The experiments show that the algorithm is more close to the optimal solution and the better search efficiency after we use vector Gaussian learning strategy. The strategy adopts vector Gaussian learning to generate the Gaussian solution of a swarm's optimal location, increases the learning ability of the swarm's optimal location, and maintains the diversity of the swarm. The method divides the states into normal and premature states by analyzing the state threshold of the swarm. If the swarm is in the premature category, the algorithm adopts an inertia weight strategy that decreases linearly in addition to vector Gaussian learning; otherwise, it uses a fixed inertia weight strategy. Experiments are conducted on eight well-known benchmark functions to verify the performance of the new approach. The results demonstrate promising performance of the new method in terms of convergence velocity and precision, with an improved ability to escape from a local optimum.

Automatic Adaptive Space Segmentation for Reinforcement Learning

  • Komori, Yuki;Notsu, Akira;Honda, Katsuhiro;Ichihashi, Hidetomo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제12권1호
    • /
    • pp.36-41
    • /
    • 2012
  • We tested a single pendulum simulation and observed the influence of several situation space segmentation types in reinforcement learning processes in order to propose a new adaptive automation for situation space segmentation. Its segmentation is performed by the Contraction Algorithm and the Cell Division Approach. Also, its automation is performed by "entropy," which is defined on action values’ distributions. Simulation results were shown to demonstrate the influence and adaptability of the proposed method.

포스트 코로나 시대 신앙교육을 위한 지능형학습플랫폼 모형 구성 연구 (A Study on the Construction of Intelligent Learning Platform Model for Faith Education in the Post Corona Era)

  • 이은철
    • 기독교교육논총
    • /
    • 제66권
    • /
    • pp.309-341
    • /
    • 2021
  • 본 연구의 목적은 포스트 코로나 시대를 준비하기 위해 신앙교육을 위한 지능형 학습플랫폼 모형을 개발하는 것이다. 이를 위해서 인공지능 알고리즘, 학습플랫폼 개발 연구, 신앙교육 관련 선행연구를 검토하여 포스트 코로나 시대를 대비할 수 있는 지능형 학습플랫폼 설계 모형의 초안을 개발하였다. 개발된 모형 초안은 전문가 5명을 대상으로 델파이 조사를 실시하여, 타당성을 검증하였다. 개발된 모형 초안은 전문가 타당성 검증결과 내용타당도가 모두 1로 나타나 타당한 것으로 검증되었다. 모형에 대해 전문가들의 수정의견이 3가지가 제시되었고, 전문가들의 의견을 반영하여 모형을 최종 수정하였다. 수정된 최종 모형은 학습자료, 학습활동, 학습데이터 및 인공지능 3개 영역으로 구성하였으며, 각 영역에 교육과정, 학습콘텐츠 추가학습자원, 학습자 유형화, 학습 행동, 평가 행동, 학습자 특성 데이터, 학습활동 데이터, 인공지능 데이터 학습분석 9개의 요소로 구성하였고, 각 구성 요소에는 29개의 세부요소를 설정하였다. 이와 함께 14개의 학습플로어를 구성하였다. 본 연구는 신앙교육을 위한 지능형 학습플랫폼의 기초적인 모형을 최초로 개발한 것이 가장 큰 시사점이라고 할 수 있다.

STAR-24K: A Public Dataset for Space Common Target Detection

  • Zhang, Chaoyan;Guo, Baolong;Liao, Nannan;Zhong, Qiuyun;Liu, Hengyan;Li, Cheng;Gong, Jianglei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권2호
    • /
    • pp.365-380
    • /
    • 2022
  • The target detection algorithm based on supervised learning is the current mainstream algorithm for target detection. A high-quality dataset is the prerequisite for the target detection algorithm to obtain good detection performance. The larger the number and quality of the dataset, the stronger the generalization ability of the model, that is, the dataset determines the upper limit of the model learning. The convolutional neural network optimizes the network parameters in a strong supervision method. The error is calculated by comparing the predicted frame with the manually labeled real frame, and then the error is passed into the network for continuous optimization. Strongly supervised learning mainly relies on a large number of images as models for continuous learning, so the number and quality of images directly affect the results of learning. This paper proposes a dataset STAR-24K (meaning a dataset for Space TArget Recognition with more than 24,000 images) for detecting common targets in space. Since there is currently no publicly available dataset for space target detection, we extracted some pictures from a series of channels such as pictures and videos released by the official websites of NASA (National Aeronautics and Space Administration) and ESA (The European Space Agency) and expanded them to 24,451 pictures. We evaluate popular object detection algorithms to build a benchmark. Our STAR-24K dataset is publicly available at https://github.com/Zzz-zcy/STAR-24K.