• Title/Summary/Keyword: Intelligent Human Identification

Search Result 46, Processing Time 0.023 seconds

Improvement of Face Recognition Speed Using Pose Estimation (얼굴의 자세추정을 이용한 얼굴인식 속도 향상)

  • Choi, Sun-Hyung;Cho, Seong-Won;Chung, Sun-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.5
    • /
    • pp.677-682
    • /
    • 2010
  • This paper addresses a method of estimating roughly the human pose by comparing Haar-wavelet value which is learned in face detection technology using AdaBoost algorithm. We also presents its application to face recognition. The learned weak classifier is used to a Haar-wavelet robust to each pose's feature by comparing the coefficients during the process of face detection. The Mahalanobis distance is used to measure the matching degree in Haar-wavelet selection. When a facial image is detected using the selected Haar-wavelet, the pose is estimated. The proposed pose estimation can be used to improve face recognition speed. Experiments are conducted to evaluate the performance of the proposed method for pose estimation.

Gait Recognition using Modified Motion Silhouette Image (개선된 움직임 실루엣 영상을 이용한 발걸음 인식에 관한 연구)

  • Hong Sung-Jun;Lee Hee-Sung;Oh Kyong-Sae;Kim Eun-Tai
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.3
    • /
    • pp.266-270
    • /
    • 2006
  • In this paper, we propose the human identification system based on Hidden Markov model using gait. Since each gait cycle consists of a set of continuous motion states and transition across states has probabilistic dependences, individual gait can be modeled using Hidden Markov model. We assume that individual gait consists of N discrete transitions and we propose gait feature representation, Modified Motion Silhouette Image (MMSI) to represent and recognize individual gait. MMSI is defined as a gray-level image and it provides not only spatial information but also temporal information. The experimental results show gait recognition performance of proposed system.

OPERATION SKILL ANALYSIS USING PRIMITIVE STATIC STATES IN HUMAN-OPEATED WORK MACHINE

  • Mitsuhiro Kamezaki;Hiroyasu Iwata;Shigeki Sugano
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.230-236
    • /
    • 2009
  • Double-front construction machinery, which was designed for complicated tasks, requires intelligent systems that can provide the quantitative work analysis needed to determine effective work procedures and that can provide operational and cognitive support for operators. Construction work environments are extremely complicated, however, and this makes state identification difficult. We therefore defined primitive static states (PSS) that are determined using on-off data for the lever inputs and manipulator loads for each part of the grapple and front and that are completely independent of the various environmental conditions and operator skill levels. To confirm the usefulness of PSS, we performed experiments with a demolition task by using our virtual reality simulator. We confirmed that PSS could robustly and accurately identify the work states and that untrained skills could be easily inferred from the PSS-based work analysis. We also confirmed in skill-training experiments that advice information using PSS-based skill analysis greatly improved work performance. We thus confirmed that PSS can adequately identify work states and are useful for work analysis and skill improvement.

  • PDF

Classification in Different Genera by Cytochrome Oxidase Subunit I Gene Using CNN-LSTM Hybrid Model

  • Meijing Li;Dongkeun Kim
    • Journal of information and communication convergence engineering
    • /
    • v.21 no.2
    • /
    • pp.159-166
    • /
    • 2023
  • The COI gene is a sequence of approximately 650 bp at the 5' terminal of the mitochondrial Cytochrome c Oxidase subunit I (COI) gene. As an effective DeoxyriboNucleic Acid (DNA) barcode, it is widely used for the taxonomic identification and evolutionary analysis of species. We created a CNN-LSTM hybrid model by combining the gene features partially extracted by the Long Short-Term Memory ( LSTM ) network with the feature maps obtained by the CNN. Compared to K-Means Clustering, Support Vector Machines (SVM), and a single CNN classification model, after training 278 samples in a training set that included 15 genera from two orders, the CNN-LSTM hybrid model achieved 94% accuracy in the test set, which contained 118 samples. We augmented the training set samples and four genera into four orders, and the classification accuracy of the test set reached 100%. This study also proposes calculating the cosine similarity between the training and test sets to initially assess the reliability of the predicted results and discover new species.

A Study on Intelligent Control of Real-Time Working Motion Generation of Bipped Robot (2족 보행로봇의 실시간 작업동작 생성을 위한 지능제어에 관한 연구)

  • Kim, Min-Seong;Jo, Sang-Young;Koo, Young-Mok;Jeong, Yang-Gun;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.19 no.1
    • /
    • pp.1-9
    • /
    • 2016
  • In this paper, we propose a new learning control scheme for various walk motion control of biped robot with same learning-base by neural network. We show that learning control algorithm based on the neural network is significantly more attractive intelligent controller design than previous traditional forms of control systems. A multi layer back propagation neural network identification is simulated to obtain a dynamic model of biped robot. Once the neural network has learned, the other neural network control is designed for various trajectory tracking control with same learning-base. The biped robots have been received increased attention due to several properties such as its human like mobility and the high-order dynamic equation. These properties enable the biped robots to perform the dangerous works instead of human beings. Thus, the stable walking control of the biped robots is a fundamentally hot issue and has been studied by many researchers. However, legged locomotion, it is difficult to control the biped robots. Besides, unlike the robot manipulator, the biped robot has an uncontrollable degree of freedom playing a dominant role for the stability of their locomotion in the biped robot dynamics. From the simulation and experiments the reliability of iterative learning control was illustrated.

Multi-Stage Path Planning Based on Shape Reasoning and Geometric Search (형상 추론과 기하학적 검색 기반의 다단계 경로 계획)

  • Hwang, Yong-K.;Cho, Kyoung-R.
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.4
    • /
    • pp.493-498
    • /
    • 2004
  • A novel approach for path planning of a polygonal robot is presented. Traditional path planners perform extensive geometric searching to find the optimal path or to prove that there is no solution. The computation required to prove that there is no solution is equivalent to exhaustive search of the motion space, which is typically very expensive. Humans seems to use a set of several different path planning strategies to analyse the situation of the obstacles in the environment, and quickly recognize whether the path-planning problem is easy to solve, hard to solve or has no solution. This human path-planning strategies have motivated the development of the presented algorithm that combines qualitative shape reasoning and exhaustive geometric searching to speed up the path planning process. It has three planning stages consisting of identification of no-solution cases based on an enclosure test, a qualitative reasoning stage, and finally a complete search algorithm in case the previous two stages cannot determine of the existence of a solution path.

Control of Mobile Robot Navigation Using Vision Sensor Data Fusion by Nonlinear Transformation (비선형 변환의 비젼센서 데이터융합을 이용한 이동로봇 주행제어)

  • Jin Tae-Seok;Lee Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.4
    • /
    • pp.304-313
    • /
    • 2005
  • The robots that will be needed in the near future are human-friendly robots that are able to coexist with humans and support humans effectively. To realize this, robot need to recognize his position and direction for intelligent performance in an unknown environment. And the mobile robots may navigate by means of a number of monitoring systems such as the sonar-sensing system or the visual-sensing system. Notice that in the conventional fusion schemes, the measurement is dependent on the current data sets only. Therefore, more of sensors are required to measure a certain physical parameter or to improve the accuracy of the measurement. However, in this research, instead of adding more sensors to the system, the temporal sequence of the data sets are stored and utilized for the accurate measurement. As a general approach of sensor fusion, a UT -Based Sensor Fusion(UTSF) scheme using Unscented Transformation(UT) is proposed for either joint or disjoint data structure and applied to the landmark identification for mobile robot navigation. Theoretical basis is illustrated by examples and the effectiveness is proved through the simulations and experiments. The newly proposed, UT-Based UTSF scheme is applied to the navigation of a mobile robot in an unstructured environment as well as structured environment, and its performance is verified by the computer simulation and the experiment.

eXtensible Rule Markup Language (XRML): Design Principles and Application (확장형 규칙 표식 언어(eXtensible Rule Markup Language) : 설계 원리 및 응용)

  • 이재규;손미애;강주영
    • Journal of Intelligence and Information Systems
    • /
    • v.8 no.1
    • /
    • pp.141-157
    • /
    • 2002
  • extensible Markup Language (XML) is a new markup language for data exchange on the Internet. In this paper, we propose a language extensible Rule Markup Language (XRML) which is an extension of XML. The implicit rules embedded in the Web pages should be identifiable, interchangeable with structured rule format, and finally accessible by various applications. It is possible to realize by using XRML. In this light, Web based Knowledge Management Systems (KMS) can be integrated with rule-based expert systems. To meet this end, we propose the six design criteria: Expressional Completeness, Relevance Linkability, Polymorphous Consistency, Applicative Universality, Knowledge Integrability and Interoperability. Furthermore, we propose three components such as RIML (Rule Identification Markup Language), RSML (Rule Structure Markup Language) and RTML (Rule Triggering Markup Language), and the Document Type Definition DTD). We have designed the XRML version 0.5 as illustrated above, and developed its prototype named Form/XRML which is an automated form processing for disbursement of the research fund in the Korea Advanced Institute of Science and Technology (KAISI). Since XRML allows both human and software agent to use the rules, there is huge application potential. We expect that XRML can contribute to the progress of Semantic Web platforms making knowledge management and e-commerce more intelligent. Since there are many emerging research groups and vendors who investigate this issue, it will not take long to see XRML commercial products. Matured XRML applications may change the way of designing information and knowledge systems in the near future.

  • PDF

A Study on the Ship Information Fusion with AIS and ARPA Radar using by Blackboard System (블랙보드 시스템을 이용한 AIS와 ARPA Radar의 선박 정보 융합에 대한 연구)

  • Kim, Do-Yeon;Park, Gyei-Kark;Kim, Hwa-Young
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.1
    • /
    • pp.16-21
    • /
    • 2014
  • In recent, the maritime traffic has increased with an increase in international trading volumes and the growing popularity of marine leisure activities. As increasing of maritime traffic, marine accidents happened continually and there are possibilities of accidents at sea. According to the analysis of marine accidents, most accidents occurred by human error of seafarers. To reduce the accidents by human error, the various assistance system for assist seafarers have been proposed. It is required to real-time data management method for applying to real-time system, but most proposed assistance system used off-line data for analysis. In this paper, we aim to build a navigation supporting system for providing safety information to deck officer with data of AIS(Automatic Identification System) and ARPA Radar(Automatic Radar Plotting Aids Radar), and proposed a management algorithm for real-time ship information with blackboard system and verified the validity.

Model Construction of Maternal Identity in Primi-gravida (초임부의 모성 정체성에 관한 모형구축)

  • 김혜원
    • Journal of Korean Academy of Nursing
    • /
    • v.28 no.2
    • /
    • pp.510-518
    • /
    • 1998
  • It was assumed that the maternal identity in primi-gravida is one of the most attribute of the motherhood, that is not biological but cognitive phenomena, appears active process as intelligent human being. The purposes of this study were that the identification the cognitive structure and the influencing factors of the maternal identity in primi-gravida. Theoretical framework in this study, maternal identity in primi-gravida was constructed as a cognitive output, has the cognitive structure of cognitive-perceptual factor, cognitive-behavioral factor, and cognitive-emotional factor. Influencing factors of maternal identity was constructed as a cognitive input, which were pregnancy related perceptions (pregnancy intention, minor discomfort, value of motherhood), interpersonal relationship(relationship with mother, relationship with husband, relationship with social network), preparation to motherhood(maternal knowledge, antenatal self care), and biological factor (gestation period). This study was the descriptive correlational research design, was done from the 3rd January to the 15th March 1996, and the research subjects were selected conviniently 226 the primi-gravida during the gestation period, data collection method was self reported questionnaire cross-sectionally. Descriptive data analysis was done by SAS PC$^{+}$, testing the hypothetical model was done by covariance structural analysis using LISREL 8.03 program. The result of the hypothesis testing, the value of motherhood(y=.650, T=4.26) the maternal knowledge (y=.137, T=2.030), the gestation period( y=.113, T=2.621), showed significant causal effect on the maternal identity in primi-gravida. In conclusion, the maternal identity in primi-gravida had interrelated cognitive structure consist of perceptual, behavioral, and emotional factors. Significant causal factors influencing the maternal identity were value identified. It seems to contribute toward the understanding the characteristics of the maternal identity as a cognitive domains that has been regarded highly abstract concept, so has not been validated empirically.y.

  • PDF