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ABSTRACT: Double-front construction machinery, which was designed for complicated tasks, requires intelligent 
systems that can provide the quantitative work analysis needed to determine effective work procedures and that can 
provide operational and cognitive support for operators. Construction work environments are extremely complicated, 
however, and this makes state identification difficult. We therefore defined primitive static states (PSS) that are 
determined using on-off data for the lever inputs and manipulator loads for each part of the grapple and front and that are 
completely independent of the various environmental conditions and operator skill levels. To confirm the usefulness of 
PSS, we performed experiments with a demolition task by using our virtual reality simulator. We confirmed that PSS 
could robustly and accurately identify the work states and that untrained skills could be easily inferred from the PSS-
based work analysis. We also confirmed in skill-training experiments that advice information using PSS-based skill 
analysis greatly improved work performance. We thus confirmed that PSS can adequately identify work states and are 
useful for work analysis and skill improvement. 
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1. INTRODUCTION 
The double-front construction machinery (DFCM) [1] 

shown in the right side of Fig. 1 was developed in 
response to recent needs for construction machinery that 
can be used not only for conventional simple earthwork 
such as ground leveling, transportation, excavation, and 
loading but also highly skilled, complicated work such as 
sorted dismantling work needed for recycling and reusing 
resources, rescue and recovery work at disaster sites, and 
building construction work. 

While double-front operations might be expected to be 
similar to skillful human actions, the fronts (as 
manipulators are called in the construction machinery 
field) on the double-front construction machinery have 
more than twice the number of degrees of freedom that 
those on single-front machinery do. This requires the 
equipment operators to have extremely high-level 
operating skills and this could lead to reduce the quality 
and efficiency of their work by making machine 
operation confusing. Operators concentrating on more 
difficult machine operations are also less likely to notice 
nearby workers or hear warnings from coworkers. 

One way to address these skill and safety problems is 
by developing advanced human-operated work machines 
with 
an intelligent system that provides the operational and 
cognitive support that operators need to work efficiency 
and safety or provides a quantitative work analysis that 
needs to determine effective and safe work procedures. 
For providing more effective support, the system must 

 
 

 
Figure 1. Greater difficulty in controlling advanced 
construction machineries 
 
adequately indentify the current work state (e.g., 
removing) or operator state (e.g., attentiveness). In other 
words, a state identification method is extremely 
important to construct an intelligent system. Surgeons and 
automobile drivers are supported by intelligent system 
using robot and information technology and these have 
been put to practical use, but their work states are more 
easily identified than those in which construction 
machinery used. This is because 1) the work environment 
is complicated, and this is especially true in demolition 
work where the use of DFCM is necessary. 2) The shape 
and position of the objects manipulated in construction 
work continually change, and 3) skill levels and 
operational methods differ from one operator to another. 

ICCEM•ICCPM2009 May 27-30 JEJU, KOREA

230



 
We can see that it is much more difficult to identify the 
work or operator states in the above three characteristics 

about construction machinery. 
 

Technology for the intelligent control of construction 
machinery has conventionally been developed in an 
application-specific way, and research efforts have been 
devoted to areas such as oscillation-stopping control for 
cranes [2], remote operation of excavators [3], intelligent 
oil-hydraulic control [4], and the analysis of power shovel 
operational [5]. We know of no systematic examination 
of state identification technology for human-operated 
work machines like construction machinery. 
 
2. RELATED AND REQUIRED WORK IN 
STATE IDENTIFICATION 
 
2.1 Conventional State Identification Methods 

Many researchers have already reported on different 
types of state identification techniques, and the hidden 
Markov models (HMM) [6], [7], dynamic Bayesian 
networks (DBN) [8], and support vector machines (SVM) 
[9] have been proposed. These methods have the 
advantages can handle identification systematically by 
optimization, but for getting a desired output result they 
must still require an enormous amount of input data for 
learning, a suitable pre-processing, parameter adjustments, 
and so on. A systematized theory for a method of 
adjusting these parameters has yet to be designed, and at 
present we have only a trial-and-error method [10]. 
 
2.2 Required State Identification Method for 
Construction Machinery 

As mentioned Chapter 1, a state identification method 
needs to consider the characteristics of construction work 
environment and construction machinery. An important 
point for developing a state identification method is how 
to avoid misrecognition of work states. In other words, a 
state identification method for construction machinery 
strongly requires high reliability and robustness that mean 
not misidentification in any kind of situation. From this 
standpoint, we understand that it is difficult to use the 
above mentioned methods (e.g., HMM) that cannot 
sufficiently and stably respond to the variety of the 
applied field.  

We therefore define a basic work state unit that is 
completely independent of the various environmental 
conditions and operator skill levels for certain and robust 
identification, and that are applicable to all types of 
construction machinery, including DFCM. 
 
3. PRIMITIVE STATIC STATES 

In developing a state identification method, we must 
address three factors: choice of input data, method of data 
processing, and extraction parts of input data. 
 
3.1 Input Data 

1) Relationship: Focused on I/O for the structure of 
human-operated machines, we can describe their system 
as follows: an operator operates manipulators by moving 
control levers (intention input) and then the machine 

recognizes the operation order and performs actions in the 

environment (movement output). Thus, to define the 
machine’s most basic state unit, we must determine the 

operator’s operational intention and the machine’s 
movement output. 

Analyzing the machine’s movement outputs, we found 
that they can be classified into the following three 
patterns. 
1) Non-load motion: when there is no contact with the 
environment (e.g., as in reaching), the machine outputs all 
the operation input as actuation. 2) Semi-load motion: 
when the machine makes contact with a movable or 
deformable part of the environment (e.g., when bending 
of a wooden beam), it divides the operation input into 
actuation of the manipulator and application of force to 
the environment. 3) Full-load motion: when the machine 
makes contact with an immovable or undeformable part 
of the environment (e.g., when pressing against a large 
wall), it applies all the operation input to the load. 
Furthermore, we understand that these three parameters 
(operation input, actuation output, and load output) are 
important. The relations among them are shown in Fig. 2. 

2) Refinement: The eight work states identifiable by 
combinations of the on-off levels of the three parameters 
are listed in the rightmost column of Table 1. Analyzing 
this table, we found that state 5), external force motion, 
and 
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state 6), inertia force motion, are not appropriate for work 
state definition because they are passive motions. 
Furthermore, state 4) is also inappropriate because it 
appears to be a fault condition. We thus found that a basic 
work state is more highly selected by omitting actuation 
parameters. Although state 3), full-load motion, can be 
specified by using the actuation, it is also important to 
avoid redundant classification. 

Therefore, the high-quality input data including relative 
parameters of operation intention and machine actuation 
is provided. We assumed that the operator’s intention is 
conveyed by the angle of the control levers and that the 
machine’s actions are the loads imposed on each 
manipulator’s joints. Finally, four states can be identified: 
1), 2), 7), and 8). 
 
3.2 Data Processing 

We think that work states would be defined better by 
using sensor date analogously or vectorially, but that 
information greatly depends on various elements (such as 
the position and the size of the work object, the machine’s 
specifications, and the operator’s skill levels), and it is 
difficult to define work states by using the trajectory of 
the end-effector or the magnitude of the joint load. This 
problem can be solved by optimizing the threshold using 
statistics processing or using machine learning, but that 
method cannot be used in all situations. When defining 
work states using uncertain data, the stability and 
certainty of the work states would be reduced and the 
utility value as a basic work states might fail. 

We therefore decided to use only binary information: 
the on and off states of the above input data. 
 
3.3 Extraction Parts of Input Data 

Standard construction machinery has many kinds of 
actuation parts, such as crawler tracks, wheels, rotating 
pivots, fronts, attachments, and blades. We think that 
information on manipulators, which actually perform the 
work, can adequately describe working states, so we 
decided to treat only manipulator information. With the 
manipulator with multi joints it is desirable to treat all the 
DOFs of the manipulator when defining a basic work 
state that focuses the on and off states of the interaction 
with the environment. However, a manipulator having a 
DOF in the end-effector (EE) does different work 
depending on the attachment types such as a grapple, 
cutter, or clamshell. 
We therefore divide this kind of manipulator into two 
components: a non-EE (hereinafter called the ARM) and 
an EE (hereinafter called the HAND). Furthermore, in a 
situation without a load, the manipulator applies direct 
action (e.g., grasping or cutting) to the environment via 
the HAND whereas the ARM performs indirect action 
(e.g., reaching), that means the ARM is only used to 
control the position and posture of HAND. Thus their 
usage purposes are clearly different.  

We therefore decided to extract the input data (lever 
input and joint load) from the two components: the ARM 

and HAND for the more detailed work state identification. 

 

In addition, in DFCM with twin manipulators, we decide 
to treat the left and right ones individually. 
 
3.4 Primitive Static States 

Based on previous sections, we defined basic work 
states using on-off information for the lever operations 
and joint load, which represents the interaction between 
the operator and environment, for the HAND and ARM, 
which represent differences in interaction with the 
environment either directly or indirectly. These states are 
the most basic states determined static information, so we 
call them primitive static states (PSS). The model that we 
used to define them is shown in Fig. 3. When we focus on 
a single arm, there are 16 separate states (24), and when 
we focus on for a double arm, there are 256 (162). The 
work states assigned to each of the 16 combinations of 
input data values states (PSS: A-P) are listed in Table 2. 
For example, when HAND load = 0, Hand operation = 0, 
ARM load = 0, and ARM operation = 1, the PSS(B) is 
reaching work, and when HAND load = 0, Hand 
operation = 0, ARM load = 1, and ARM operation = 1, 
the PSS(D) is compressing work. 
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4. WORK STATE IDENTIFICATION USING 
PSS 

To evaluate the effectiveness of using primitive static 
states, we performed a state identification experiment in 
which the work environment conditions and operators 
were changed, using our VR simulator as shown in Figs. 
4 and 5 (detailed specification given in [11]). 
 
4.1 Experimental Conditions 

Each experimental task (A or B) was to remove, using 
a single front, a beam fixed on two columns. For task A 
the beam was 5.0 m above the ground and 3.5 m from the 
front of the machine, and for task B the beam was 3.0 m 
above the ground and 5.0 m from the front of the machine. 
In task B the bond between the beam and column was 
twice as strong as it was in task A. Two operators who 
had used to VR simulator enough to be considered 
experts were used as subjects. 
 
4.2 Results 

The experimental results are shown in Fig. 6, where the 
horizontal axis is the time taken and the colors of the bars 
represent PSS (relations between state and color are given 
in Table 2). From the results with each different task 
condition and operator, we found that same work 
procedure (reaching, grasping, transporting, and then  
releasing) was identified under all experimental 
conditions. In other words, even when we changed the 
destination 

 

 

position, dynamic restriction, and operator, the PSS could 
distinguish the work states. Furthermore, we analyzed the 
results. Comparing the results shown in lines 1) and 2) in 
Fig. 6 for which the environmental conditions were the 
same, we found that for 1) the operation time to complete 
a task was longer than that for 2). And analyzing the 
PSSbased operation time, we also found that excessive 
transportation time was one specific cause of delay for 1). 
In addition, comparing the results shown in lines 2) and 
3) for which operation time to complete a task was the 
same, we found that for 2) the reaching time was longer 
than that for 3) and that for 2) the transporting time was 
shorter than that for 3), and that for 3) there was a 
particularly useless stoppage during transportation.  

When getting the two data that the total time taken is 
the same, we cannot help but judge the same operation 
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skill, but the unskilled work or cause of delay can be 
estimated 
comparatively easily by analyzing those based on PSS. 
 
5. WORK AND SKILL ANAKYSIS USING PSS 

We applied the analysis results of PSS-based state 
identification to work and skills analysis. 
 
5.1 Skill Analysis in a Demolition Task 

Ten healthy adult males (20-25 years old) having no 
experience of any kind with the operation of construction 
machinery were used as subjects. The task, which 
modeled work done in the demolition of wooden house, 
was to remove roof boards by using DFCM. Five long 

boards were attached to a framework consisting of 
columns and 

 
 

 
 
beams. The subject’s task (Fig. 7), using the two fronts, 
was to remove the board closest to him, and transport it to 
the target position without bending it, release it there, and 
then go back to remove the next beams until all five had 
been moved from the framework to the target position. 
We present skill analysis example concerning the time 
taken.Fig. 8 shows the PSS-separated time taken for the 
two subjects whose total time was the same and Fig. 9 
showsthe PSS-separated time taken for right and left arm 
on one subject. The number of the horizontal axis 
represents each PSS (see Table 2). 
1) Analysis of work: One can see in Fig. 8 that the idling 

time (PSS (00)) and reaching time (PSS (01)) of operator 
A were long. For operator B, on the other hand, the idling, 
reaching, and transportation time (PSS (11)) were short, 
but the holding time (PSS (08 and 10)) was long. From 
these analysis results, we can guess that operator A was 
not used to machine operation and therefore spent much 
time on reaching and transportation and that operator B 

spent much time con-firming that the two end-effectors 
stably held the beam. 
2) Analysis for arms: From Fig. 9 we can see that the 

holding time for the left arm was so long that this subject 
might have operated the machinery by first reaching with 
the left hand and then performing the same action with 
the right hand. We can also see that the reaching time for 
the right arm was longer than that for the left one, 
suggesting that the left arm operation was more skillful 
than the right one. Further-more, a single-arm approach 
resulted in useless waiting time. 

We can surely extract operator characteristics by work 
analysis using PSS. PSS-based analysis can provide 
useful information concerning not only time taken but 
also other data (e.g., position, speed, or load related to 
each joint). 
 
5.2 Application to Operation Skill-Training 

From the results of previous section, we think that 
providing advice information based on PSS-based skill 
analysis would improve the operator’s work performance. 
We therefore performed an operation skill-training 
experiment. To validate the utility of support information 
with PSS (PSS support) we compared two other 
experimental conditions, one providing no advice 
(nonsupport) and the providing obtained data without 
PSS analysis (normal support). 

We divided the subjects into three groups according to 
their simulator experience: group 1 (four novices), group 
2 (three novices), and group 3 (three experts). After 
pretraining for 20 minutes, all subjects performed the task 
shown in Fig. 7 with four sets per day for three successive 
days. The support con-tent was changed for different 
groups and on different days. On the first day, all groups 
were given non-support to en-able us to measure standard 
skill improvement degree. On the second day, group 1 
was given PSS support, group 2 was given normal 
support (total data through the whole work), and group 3 
was given non-support to enable us to measure the 
effectiveness of PSS support in skills improvement. On 
the third day, we gave PSS support to all groups and 
inspected the improvement of work performance for 
group 3. Support information was the time taken, the 
relative position of the two EEs, and the number of lever 
operations used to get there and back. Furthermore, we 
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compared the concerned trial data with the average of all 
the subjects and the latest trial data for the operator’s own 
and then quantified their difference and clarified good or 
weak skills and tasks. We presented the analyzed data 
table and describe the great different data as the concrete 
improvement points. These are provided at pre-training 
and during the break time (5 min) between training sets. 
The relationship between the trial number of times (in 
total 12 times for three days) and time taken to complete a 
task for three groups is shown in Fig. 10. 
1) Decrease in time taken: For groups 1 and 2, there was 
hardly any difference at the end of the first day, but we 
found that group 1, which was given PSS support, had 
largely improved operational skills by the end of the 

second day. Two-tailed t-testing revealed that at the end 
of the second day the difference between groups 1 and 2 
was statistically significant (t = 2.62, p < 0.05). 
Furthermore, when we examined the first and second 
days for group 3, we found a tendency for the time taken 
to decrease as operations became used to the task. When 
the training extended over more than one day, however, 
we found that their operational skill level was reset to the 
level at the beginning of first day. Two-tailed t-testing 
showed no significant between trials at the end of the first 
day and the beginning of the second day (t = 0.77, n.s.). 
We can also see that at the end of the second day the time 
taken was

 
 

 
shorter for group 1 than it was for group 3 even though 
group 1 was less experience than group 3. From these 
results, we confirmed that information support based on 
PSS easily reveals the shortage operation skills and are 
very effective for improving operation skills. 
2) Promoting skills improvement: For groups 2 and 3, 
which were provided PSS support on the third day, it 
would be expected that at the end of the second day the 
time taken is shorter for the group 3 as same as that for 
group 1. From Fig. 10, we found that the time taken for 
group 3 on the end of the third day was shorter than that 
taken for group 1 on the end of the second day. In 
addition, although the operators in group 3 trained for two 
days, no improvement in their work performance was 
seen. However, they could shorten the time taken by 
providing PSS-based advice. Two-tailed t-testing reveals 
that about group 3 the difference between at the 
beginning and end of the third day was statistically 
significant (t =2.59, p < 0.05). 
We found that not only time taken but also other data, 
which include failure rata or internal force applied to 
transported object, also decreased through this experiment. 
We thus confirmed that operators could easily understand 
specific improvement points and this makes great 
improvement in operational skill. 
 
6. CONCLUSION AND FUTURE WORK 
In this report we proposed basic work states that are 
independent of various work environment conditions and 

an operator’s skill level. These states are determined 
using four sets of on-off information for the lever 
operations and joint loads for the HAND and ARM of 
manipulator (primitive static states: PSS). We confirmed 
their usefulness experimentally in a demolition task using 
a DFCM simulator. We first confirmed that primitive 
static states could robustly identify the working states 
accurately and then confirmed that work analysis using 
primitive static states easily enabled us to estimate the 
causes of the lack of skills. Finally, in skill training 
experiment, we showed that advice information based on 
the skill analysis with PSS greatly improved operator’s 
work performance. 
We thus confirmed that PSS can adequately identify work 
states and are useful for work analysis and skill 
improvement. PSS are extremely formal states. Thus 
many work states that have semantically same property 
are included in one PSS (PSS (11) include the 
transporting, bending, and removing work). To classify 
these, we think that advanced solutions based on PSS 
identification are demanded. 
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