• Title/Summary/Keyword: Intelligent Data Analysis

Search Result 1,456, Processing Time 0.027 seconds

Fuzzy least squares polynomial regression analysis using shape preserving operations

  • Hong, Dug-Hun;Hwang, Chang-Ha;Do, Hae-Young
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.5
    • /
    • pp.571-575
    • /
    • 2003
  • In this paper, we describe a method for fuzzy polynomial regression analysis for fuzzy input--output data using shape preserving operations for least-squares fitting. Shape preserving operations simplifies the computation of fuzzy arithmetic operations. We derive the solution using mixed nonlinear program.

For Improving Security Log Big Data Analysis Efficiency, A Firewall Log Data Standard Format Proposed (보안로그 빅데이터 분석 효율성 향상을 위한 방화벽 로그 데이터 표준 포맷 제안)

  • Bae, Chun-sock;Goh, Sung-cheol
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.30 no.1
    • /
    • pp.157-167
    • /
    • 2020
  • The big data and artificial intelligence technology, which has provided the foundation for the recent 4th industrial revolution, has become a major driving force in business innovation across industries. In the field of information security, we are trying to develop and improve an intelligent security system by applying these techniques to large-scale log data, which has been difficult to find effective utilization methods before. The quality of security log big data, which is the basis of information security AI learning, is an important input factor that determines the performance of intelligent security system. However, the difference and complexity of log data by various product has a problem that requires excessive time and effort in preprocessing big data with poor data quality. In this study, we research and analyze the cases related to log data collection of various firewall. By proposing firewall log data collection format standard, we hope to contribute to the development of intelligent security systems based on security log big data.

Analysis of Driving and Environmental Impacts by Providing Warning Information in C-ITS Vehicles Using PVD (PVD를 활용한 C-ITS 차량 내 경고정보 제공에 따른 주행 및 환경영향 분석)

  • Yoonmi Kim;Ho Seon Kim;Kyeong-Pyo Kang;Seoung Bum Kim
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.5
    • /
    • pp.224-239
    • /
    • 2023
  • C-ITS (Cooperative-Intelligent Transportation System) refers to user safety-oriented technology and systems that provide forward traffic situation information based on a two-way wireless communication technology between vehicles or between vehicles and infrastructure. Since the Daejeon-Sejong pilot project in 2016, the C-ITS infrastructure has been installed at various locations to provide C-ITS safety services through highway and local government demonstration projects. In this study, a methodology was developed to verify the effectiveness of the warning information using individual vehicle data collected through the Gwangju Metropolitan City C-ITS demonstration project. The analysis of the effectiveness was largely divided into driving behavior impact analysis and environmental analysis. Compliance analysis and driving safety evaluation were performed for the driving impact analysis. In addition, to supplement the inadequate collection of Probe Vehicle Data (PVD) collected during the C-ITS demonstration project, Digital Tacho Graph ( DTG ) data was additionally collected and used for effect analysis. The results of the compliance analysis showed that drivers displayed reduced driving behavior in response to warning information based on a sufficient number of valid samples. Also, the results of calculating and analyzing driving safety indicators, such as jerk and acceleration noise, revealed that driving safety was improved due to the provision of warning information.

A study on data collection environment and analysis using virtual server hosting of Azure cloud platform (Azure 클라우드 플랫폼의 가상서버 호스팅을 이용한 데이터 수집환경 및 분석에 관한 연구)

  • Lee, Jaekyu;Cho, Inpyo;Lee, Sangyub
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.07a
    • /
    • pp.329-330
    • /
    • 2020
  • 본 논문에서는 Azure 클라우드 플랫폼의 가상서버 호스팅을 이용해 데이터 수집 환경을 구축하고, Azure에서 제공하는 자동화된 기계학습(Automated Machine Learning, AutoML)을 기반으로 데이터 분석 방법에 관한 연구를 수행했다. 가상 서버 호스팅 환경에 LAMP(Linux, Apache, MySQL, PHP)를 설치하여 데이터 수집환경을 구축했으며, 수집된 데이터를 Azure AutoML에 적용하여 자동화된 기계학습을 수행했다. Azure AutoML은 소모적이고 반복적인 기계학습 모델 개발을 자동화하는 프로세스로써 기계학습 솔루션 구현하는데 시간과 자원(Resource)를 절약할 수 있다. 특히, AutoML은 수집된 데이터를 분류와 회귀 및 예측하는데 있어서 학습점수(Training Score)를 기반으로 보유한 데이터에 가장 적합한 기계학습 모델의 순위를 제공한다. 이는 데이터 분석에 필요한 기계학습 모델을 개발하는데 있어서 개발 초기 단계부터 코드를 설계하지 않아도 되며, 전체 기계학습 시스템을 개발 및 구현하기 전에 모델의 구성과 시스템을 설계해볼 수 있기 때문에 매우 효율적으로 활용될 수 있다. 본 논문에서는 NPU(Neural Processing Unit) 학습에 필요한 데이터 수집 환경에 관한 연구를 수행했으며, Azure AutoML을 기반으로 데이터 분류와 회귀 등 가장 효율적인 알고리즘 선정에 관한 연구를 수행했다.

  • PDF

ITS : Intelligent Tissue Mineral Analysis Medical Information System (ITS : 지능적 Tissue Mineral Analysis 의료 정보 시스템)

  • Cho, Young-Im
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.2
    • /
    • pp.257-263
    • /
    • 2005
  • There are some problems in TMA. There are no databases in Korea which can be independently and specially analyzed the TMA results. Even there are some medical databases, some of them are low level databases which are related to TMA, so they can not serve medical services to patients as well as doctors. Moreover, TMA results are based on the database of american health and mineral standards, it is possibly mislead oriental, especially korean, mineral standards. The purposes of this paper is to develope the first Intelligent TMA Information System(ITS) which makes clear the problems mentioned earlier ITS can analyze TMA data with multiple stage decision tree classifier. It is also constructed with multiple fuzzy rule base and hence analyze the complex data from Korean database by fuzzy inference methods.

A Virtual Battlefield Situation Dataset Generation for Battlefield Analysis based on Artificial Intelligence

  • Cho, Eunji;Jin, Soyeon;Shin, Yukyung;Lee, Woosin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.6
    • /
    • pp.33-42
    • /
    • 2022
  • In the existing intelligent command control system study, the analysis results of the commander's battlefield situation questions are provided from knowledge-based situation data. Analysis reporters write these results in various expressions of natural language. However, it is important to analyze situations about information and intelligence according to context. Analyzing the battlefield situation using artificial intelligence is necessary. We propose a virtual dataset generation method based on battlefield simulation scenarios in order to provide a dataset necessary for the battlefield situation analysis based on artificial intelligence. Dataset is generated after identifying battlefield knowledge elements in scenarios. When a candidate hypothesis is created, a unit hypothesis is automatically created. By combining unit hypotheses, similar identification hypothesis combinations are generated. An aggregation hypothesis is generated by grouping candidate hypotheses. Dataset generator SW implementation demonstrates that the proposed method can be generated the virtual battlefield situation dataset.

Development of Intelligent Database Program for PSI/ISI Data Management of Nuclear Power Plant (Part II) (원자력발전소 PSI/ISI 데이더 관리를 위한 지능형 데이더베이스 프로그램 개발 (제 2보))

  • Park, Un-Su;Park, Ik-Keun;Um, Byong-Guk;Lee, Jong-Po;Han, Chi-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.3
    • /
    • pp.200-205
    • /
    • 2000
  • In a previous paper, we have discussed the intelligent Windows 95-based data management program(IDPIN) which was developed for effective and efficient management of large amounts of pre-/in-service inspection(PSI/ISI) data of Kori nuclear power plants. The IDPIN program enables the prompt extraction of previously conducted PSI/ISI conditions and results so that the time-consuming data management, painstaking data processing and analysis of the past are avoided. In this study, the intelligent Windows based data management program(WS-IDPIN) has been developed as an effective data management of PSI/ISI data for the Wolsong nuclear power plants. The WS-IDPIN program includes the modules of comprehensive management and analysis of PSI/ISI results, statistical reliability assessment program of PSI/ISI results(depth and length sizing performance etc), standardization of UT report form and computerization of UT results. In addition, the program can be further developed as a unique PSI/ISI data management expert system which can be part of the PSI/ISI total support system for Korean nuclear power plants.

  • PDF

Design and Implementation of Intelligent Agent System Using Environment and Customer's Profiles Analysis based on RFID (RFID 기반의 환경 및 고객 프로파일 분석 지능형 에이전트 시스템 설계 및 구현)

  • Lee, Keun-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.10
    • /
    • pp.4626-4631
    • /
    • 2011
  • In this paper, we design an ubiquitous-type shopping mall using RFID(Radio Frequency IDentification) technology and a location analysis system which can locate customers in real time at off-line shopping malls as a way to provide any services to customers, based on the results of environmental analysis data. We also suggest an intelligent agent system which can provide a personalized information in time.

Knowledge Domain and Emerging Trends of Intelligent Green Building and Smart City - A Visual Analysis Using CiteSpace

  • Li, Hongyang;Dai, Mingjie
    • International conference on construction engineering and project management
    • /
    • 2017.10a
    • /
    • pp.24-31
    • /
    • 2017
  • As the concept of sustainability becomes more and more popular, a large amount of literature have been recorded recently on intelligent green building and smart city (IGB&SC). It is therefore needed to systematically analyse the existing knowledge structure as well as the future new development of this domain through the identification of the thematic trends, landmark articles, typical keywords together with co-operative researchers. In this paper, Citespace software package is applied to analyse the citation networks and other relevant data of the past eleven years (from 2006 to 2016) collected from Web of Science (WOS). Through this, a series of professional document analysis are conducted, including the production of core authors, the influence made by the most cited authors, keywords extraction and timezone analysis, hot topics of research, highly cited papers and trends with regard to co-citation analysis, etc. As a result, the development track of the IGB&SC domains is revealed and visualized and the following results reached: (i) in the research area of IGB&SC, the most productive researcher is Winters JV and Caragliu A is most influential on the other hand; (ii) different focuses of IGB&SC research have been emerged continually from 2006 to 2016 e.g. smart growth, sustainability, smart city, big data, etc.; (iii) Hollands's work is identified with the most citations and the emerging trends, as revealed from the bursts analysis in document co-citations, can be concluded as smart growth, the assessment of intelligent green building and smart city.

  • PDF

Band Feature Extraction of Normal Distributive Multispectral Image Data using Rough Sets

  • Chung, Hwan-mook;Won, Sung-Hyun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.314-319
    • /
    • 1998
  • In this paper, for efficient data classification in multispectral bands environment, a band feature extraction method using the Rough sets theroy is proposed. First, we make a look up table from training data, and analyze the properties of experimental multispectral image data, then select the efficient band usin indiscernibility relation of Rough sets theory from analysis results. Proposed method is applied to LAMDSAT TM data on 2, June, 1992. Among them, normal distributive data were experimented, mainly. From this, we show clustering trends that similar to traditional band selection results by wavelength properties, from this, we verify that can use the proposed method that centered on data properties to select the efficient bands, though data sensing environment change to hyperspectral band environments.

  • PDF