Kim, Chang-Yun;Ahn, Byeong-Seok;Cho, Sung-Sik;Kim, Soung-Hie
Asia pacific journal of information systems
/
v.9
no.4
/
pp.23-40
/
1999
This paper proposes a hybrid intelligent system that predicts the failure of firms based on the past financial performance data, combining neural network and rough set approach, We can get reduced information table, which implies that the number of evaluation criteria such as financial ratios and qualitative variables and objects (i.e., firms) is reduced with no information loss through rough set approach. And then, this reduced information is used to develop classification rules and train neural network to infer appropriate parameters. Through the reduction of information table, it is expected that the performance of the neural network improve. The rules developed by rough sets show the best prediction accuracy if a case does match any of the rules. The rationale of our hybrid system is using rules developed by rough sets for an object that matches any of the rules and neural network for one that does not match any of them. The effectiveness of our methodology was verified by experiments comparing traditional discriminant analysis and neural network approach with our hybrid approach. For the experiment, the financial data of 2,400 Korean firms during the period 1994-1996 were selected, and for the validation, k-fold validation was used.
Recently, IITS (intelligent integrated transportation system) has been important topic in Smart City related industry. As a main objective of IITS, prevention of traffic jam (due to car accidents) has been attempted with help of advanced sensor and communication technologies. Studies show that car accident has certain correlation with some factors including characteristics of location, weather, driver's behavior, and time of day. We concentrate our study on observing auto correlativity of car accidents in terms of time of day. In this paper, we performed the ARIMA tests including ADF (augmented Dickey-Fuller) to check the three factors determining auto-regressive, stationarity, and lag order. Summary on forecasting of hourly car crash counts is presented, we show that the traffic accident data obtained in Korea can be applied to ARIMA model and present a result that traffic accidents in Korea have property of being recurrent daily basis.
Since COVID-19, the world's food shortage population has more than doubled from 130 million to 270 million. In addition, as various issues related to the food industry such as climate change arise, the importance of agriculture and livestock is increasing. In particular, it is still difficult to utilize data generated in these field. Therefore, the objective of this study was to explain the limitations of using data based on fragmentary analysis and the necessity of Digital Twin. The additional objective was to propose an architecture and necessary technologies of a Digital Twin platform suitable for agricultural and livestock. It also proposed a Digital Twin-based service that could be used in the near future, such as labor reduction, productivity improvement, personalized consumption, transportation, and distribution by incorporating intelligent information convergence technology into facility horticulture and livestock farming.
Journal of information and communication convergence engineering
/
v.17
no.1
/
pp.74-83
/
2019
This study designs a squat posture recognition system that can provide correct squat posture guidelines. This system comprises two modules: a Kinect camera for monitoring users' body movements and a Wii Balance Board(WBB) for measuring balanced postures with legs. Squat posture recognition involves two states: "Stand" and "Squat." Further, each state is divided into two postures: correct and incorrect. The incorrect postures of the Stand and Squat states were classified into three and two different types of postures, respectively. The factors that determine whether a posture is incorrect or correct include the difference between shoulder width and ankle width, knee angle, and coordinate of center of pressure(CoP). An expert and 10 participants participated in experiments, and the three factors used to determine the posture were measured using both Kinect and WBB. The acquired data from each device show that the expert's posture is more stable than that of the subjects. This data was classified using a support vector machine (SVM) and $na{\ddot{i}}ve$ Bayes classifier. The classification results showed that the accuracy achieved using the SVM and $na{\ddot{i}}ve$ Bayes classifier was 95.61% and 81.82%, respectively. Therefore, the developed system that used Kinect and WBB could classify correct and incorrect postures with high accuracy. Unlike in other studies, we obtained the spatial coordinates using Kinect and measured the length of the body. The balance of the body was measured using CoP coordinates obtained from the WBB, and meaningful results were obtained from the measured values. Finally, the developed system can help people analyze the squat posture easily and conveniently anywhere and can help present correct squat posture guidelines. By using this system, users can easily analyze the squat posture in daily life and suggest safe and accurate postures.
The rapid development of artificial intelligence technologies such as machine learning and deep learning is expanding its impact in the public administrative and public policy sphere. This paper is an exploratory study on policy decision-making in the age of artificial intelligence to design automated configuration and operation through data analysis and algorithm development. The theoretical framework was composed of the types of policy problems according to the degree of problem structuring, and the success and failure cases were classified and analyzed to derive implications. In other words, when the problem structuring is more difficult than others, the greater the possibility of failure or side effects of decision-making using artificial intelligence. Also, concerns about the neutrality of the algorithm were presented. As a policy suggestion, a subcommittee was proposed in which experts in technical and social aspects play a professional role in establishing the AI promotion system in Korea. Although the subcommittee works independently, it suggests that it is necessary to establish governance in which the results of activities can be synthesized and integrated.
Journal of the Korea Institute of Information and Communication Engineering
/
v.26
no.6
/
pp.827-833
/
2022
This study aims to prevent secondary traffic accidents with high severity by overcoming the limitations of existing traffic information collection systems through analysis of traffic information collection detectors and various algorithms used to detect unexpected situations. In other words, this study is meaningful present that analyzing the 'unexpected situation that causes secondary traffic accidents' and 'Existing traffic information collection system' accordingly presenting a solution that can preemptively prevent secondary traffic accidents, intelligent traffic information collection system that enables accurate information collection on all sections of the road. As a result of the experiment, the reliability of data transmission reached 97% based on 95%, the data transmission speed averaged 209ms based on 1000ms, and the network failover time achieved targets of 50sec based on 120sec.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.17
no.8
/
pp.2030-2052
/
2023
Analysis of a bipartite (two-mode) network is a significant research area to understand the formation of social communities, economic systems, drug side effect topology, etc. in complex information systems. Most of the previous works talk about a projection-based model or latent feature model, which predicts the link based on singular similarity. The projection-based models suffer from the loss of structural information in the projected network and the latent feature is hardly present. This work proposes a novel method for link prediction in the bipartite network based on an ensemble of composite similarities, overcoming the issues of model-based and latent feature models. The proposed method analyzes the structure, neighborhood nodes as well as latent attributes between the nodes to predict the link in the network. To illustrate the proposed method, experiments are performed with five real-world data sets and compared with various state-of-art link prediction methods and it is inferred that this method outperforms with ~3% to ~9% higher using area under the precision-recall curve (AUC-PR) measure. This work holds great significance in the study of biological networks, e-commerce networks, complex web-based systems, networks of drug binding, enzyme protein, and other related networks in understanding the formation of such complex networks. Further, this study helps in link prediction and its usability for different purposes ranging from building intelligent systems to providing services in big data and web-based systems.
Kim, Seoyeon;Yun, Young-Sun;Hong, Jiman;Kim, Bongjae;Lee, Keon Myung;Jung, Jinman
Smart Media Journal
/
v.11
no.2
/
pp.70-76
/
2022
IoT application development using a cloud server causes problems such as data transmission and reception delay, network traffic, and cost for real-time processing support in network connected hardware. To solve this problem, edge cloud-based platforms can use neuromorphic hardware to enable fast data transfer. In this paper, we propose a model optimization method for supporting spiking neural networks on FPGA hardware. We focused on auto-adjusting network model parameters optimized for neuromorphic hardware. The proposed method performs optimization to show higher performance based on user requirements for accuracy. As a result of performance analysis, it satisfies all requirements of accuracy and showed higher performance in terms of expected execution time, unlike the naive method supported by the existing open source framework.
Kim, Wongil;Son, Bongsoo;Chung, Jin-Hyuk;Lee, Jeomho
KSCE Journal of Civil and Environmental Engineering Research
/
v.28
no.5D
/
pp.587-595
/
2008
Many studies on bus scheduling optimization have been done from the 1960s to recent years for establishing rational bus schedule plan that can improve convenience of bus passengers and minimize unnecessary runs. After 2000, as part of the Intelligent Transport Systems (ITS), the importance of the schedule management and providing schedule information through bus schedule optimization has become a big issue, and much research is being done to develop optimization models that will increase bus passenger convenience and, on the side of bus management, minimize unnecessary bus operation. The purpose of this study is to calculate the optimal bus frequency and create a timetable for each bus stop by applying DTR or DTRC model that use data for each bus stop and route segment. Model verification process was implemented using data collected from bus management system (BMS) and integrated transit-fare card system for bus route of Seoul's No. 472 line. In order to evaluate the reliability and uncertainty of optimal solution, sensitivity analysis was implemented for the various parameters and assumptions used in the bus scheduling model.
KSCE Journal of Civil and Environmental Engineering Research
/
v.30
no.3D
/
pp.241-246
/
2010
This study is to estimate the link travel time of road networks in urban areas utilizing traffic information which is collected throughout the operation of Bus Information System (BIS). BIS, which applies the hightech information technology to an existing bus system, has been developing and operating in many bodies including the local self-government entities. However, a study to consider the technology trend is relatively rare. Even though some useful traffic informations have been collected throughout the operation of an existing BIS, which set limits to the development of a future service of integrated analysis. Accordingly, in this study, a fundamental research is performed for traffic controls in urban areas and providing a traffic information for driver throughout the estimation of link travel time of road networks. The study is proceeded throughout the data collected from the operation of BIS (Bus Information System). The result showed that the patterns of going through traffic were divided up to 2 in the bus travel time in BIS then estimate two link travel time.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.