• Title/Summary/Keyword: Intelligent Data Analysis

Search Result 1,456, Processing Time 0.035 seconds

The Integrated Methodology of Rough Set Theory and Artificial Neural Network for Business Failure Prediction (도산 예측을 위한 러프집합이론과 인공신경망 통합방법론)

  • Kim, Chang-Yun;Ahn, Byeong-Seok;Cho, Sung-Sik;Kim, Soung-Hie
    • Asia pacific journal of information systems
    • /
    • v.9 no.4
    • /
    • pp.23-40
    • /
    • 1999
  • This paper proposes a hybrid intelligent system that predicts the failure of firms based on the past financial performance data, combining neural network and rough set approach, We can get reduced information table, which implies that the number of evaluation criteria such as financial ratios and qualitative variables and objects (i.e., firms) is reduced with no information loss through rough set approach. And then, this reduced information is used to develop classification rules and train neural network to infer appropriate parameters. Through the reduction of information table, it is expected that the performance of the neural network improve. The rules developed by rough sets show the best prediction accuracy if a case does match any of the rules. The rationale of our hybrid system is using rules developed by rough sets for an object that matches any of the rules and neural network for one that does not match any of them. The effectiveness of our methodology was verified by experiments comparing traditional discriminant analysis and neural network approach with our hybrid approach. For the experiment, the financial data of 2,400 Korean firms during the period 1994-1996 were selected, and for the validation, k-fold validation was used.

  • PDF

Time Series Forecasting on Car Accidents in Korea Using Auto-Regressive Integrated Moving Average Model (자동 회귀 통합 이동 평균 모델 적용을 통한 한국의 자동차 사고에 대한 시계열 예측)

  • Shin, Hyunkyung
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.12
    • /
    • pp.54-61
    • /
    • 2019
  • Recently, IITS (intelligent integrated transportation system) has been important topic in Smart City related industry. As a main objective of IITS, prevention of traffic jam (due to car accidents) has been attempted with help of advanced sensor and communication technologies. Studies show that car accident has certain correlation with some factors including characteristics of location, weather, driver's behavior, and time of day. We concentrate our study on observing auto correlativity of car accidents in terms of time of day. In this paper, we performed the ARIMA tests including ADF (augmented Dickey-Fuller) to check the three factors determining auto-regressive, stationarity, and lag order. Summary on forecasting of hourly car crash counts is presented, we show that the traffic accident data obtained in Korea can be applied to ARIMA model and present a result that traffic accidents in Korea have property of being recurrent daily basis.

A Study on the Implementation of Digital Twin Architecture and Detailed Technology for Agriculture and Livestock Industry (농·축산 산업을 위한 디지털 트윈 아키텍처 및 세부 기술 구현에 관한 연구)

  • Jeong, Deuk-Young;Kim, Se-Han;Lee, In-Bok;Yeo, Uk-Hyeon;Lee, Sang-Yeon;Kim, Jun-Gyu;Park, Se-Jun
    • Journal of Broadcast Engineering
    • /
    • v.26 no.4
    • /
    • pp.398-408
    • /
    • 2021
  • Since COVID-19, the world's food shortage population has more than doubled from 130 million to 270 million. In addition, as various issues related to the food industry such as climate change arise, the importance of agriculture and livestock is increasing. In particular, it is still difficult to utilize data generated in these field. Therefore, the objective of this study was to explain the limitations of using data based on fragmentary analysis and the necessity of Digital Twin. The additional objective was to propose an architecture and necessary technologies of a Digital Twin platform suitable for agricultural and livestock. It also proposed a Digital Twin-based service that could be used in the near future, such as labor reduction, productivity improvement, personalized consumption, transportation, and distribution by incorporating intelligent information convergence technology into facility horticulture and livestock farming.

Development of Squat Posture Guidance System Using Kinect and Wii Balance Board

  • Oh, SeungJun;Kim, Dong Keun
    • Journal of information and communication convergence engineering
    • /
    • v.17 no.1
    • /
    • pp.74-83
    • /
    • 2019
  • This study designs a squat posture recognition system that can provide correct squat posture guidelines. This system comprises two modules: a Kinect camera for monitoring users' body movements and a Wii Balance Board(WBB) for measuring balanced postures with legs. Squat posture recognition involves two states: "Stand" and "Squat." Further, each state is divided into two postures: correct and incorrect. The incorrect postures of the Stand and Squat states were classified into three and two different types of postures, respectively. The factors that determine whether a posture is incorrect or correct include the difference between shoulder width and ankle width, knee angle, and coordinate of center of pressure(CoP). An expert and 10 participants participated in experiments, and the three factors used to determine the posture were measured using both Kinect and WBB. The acquired data from each device show that the expert's posture is more stable than that of the subjects. This data was classified using a support vector machine (SVM) and $na{\ddot{i}}ve$ Bayes classifier. The classification results showed that the accuracy achieved using the SVM and $na{\ddot{i}}ve$ Bayes classifier was 95.61% and 81.82%, respectively. Therefore, the developed system that used Kinect and WBB could classify correct and incorrect postures with high accuracy. Unlike in other studies, we obtained the spatial coordinates using Kinect and measured the length of the body. The balance of the body was measured using CoP coordinates obtained from the WBB, and meaningful results were obtained from the measured values. Finally, the developed system can help people analyze the squat posture easily and conveniently anywhere and can help present correct squat posture guidelines. By using this system, users can easily analyze the squat posture in daily life and suggest safe and accurate postures.

An Exploratory Study on Policy Decision Making with Artificial Intelligence: Applying Problem Structuring Typology on Success and Failure Cases (인공지능을 활용한 정책의사결정에 관한 탐색적 연구: 문제구조화 유형으로 살펴 본 성공과 실패 사례 분석)

  • Eun, Jong-Hwan;Hwang, Sung-Soo
    • Informatization Policy
    • /
    • v.27 no.4
    • /
    • pp.47-66
    • /
    • 2020
  • The rapid development of artificial intelligence technologies such as machine learning and deep learning is expanding its impact in the public administrative and public policy sphere. This paper is an exploratory study on policy decision-making in the age of artificial intelligence to design automated configuration and operation through data analysis and algorithm development. The theoretical framework was composed of the types of policy problems according to the degree of problem structuring, and the success and failure cases were classified and analyzed to derive implications. In other words, when the problem structuring is more difficult than others, the greater the possibility of failure or side effects of decision-making using artificial intelligence. Also, concerns about the neutrality of the algorithm were presented. As a policy suggestion, a subcommittee was proposed in which experts in technical and social aspects play a professional role in establishing the AI promotion system in Korea. Although the subcommittee works independently, it suggests that it is necessary to establish governance in which the results of activities can be synthesized and integrated.

A Study on Application of Autonomous Traffic Information Based on Artificial Intelligence (인공지능 기반의 자율형 교통정보 응용에 대한 연구)

  • Oh, Am-Suk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.6
    • /
    • pp.827-833
    • /
    • 2022
  • This study aims to prevent secondary traffic accidents with high severity by overcoming the limitations of existing traffic information collection systems through analysis of traffic information collection detectors and various algorithms used to detect unexpected situations. In other words, this study is meaningful present that analyzing the 'unexpected situation that causes secondary traffic accidents' and 'Existing traffic information collection system' accordingly presenting a solution that can preemptively prevent secondary traffic accidents, intelligent traffic information collection system that enables accurate information collection on all sections of the road. As a result of the experiment, the reliability of data transmission reached 97% based on 95%, the data transmission speed averaged 209ms based on 1000ms, and the network failover time achieved targets of 50sec based on 120sec.

Link Prediction in Bipartite Network Using Composite Similarities

  • Bijay Gaudel;Deepanjal Shrestha;Niosh Basnet;Neesha Rajkarnikar;Seung Ryul Jeong;Donghai Guan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.8
    • /
    • pp.2030-2052
    • /
    • 2023
  • Analysis of a bipartite (two-mode) network is a significant research area to understand the formation of social communities, economic systems, drug side effect topology, etc. in complex information systems. Most of the previous works talk about a projection-based model or latent feature model, which predicts the link based on singular similarity. The projection-based models suffer from the loss of structural information in the projected network and the latent feature is hardly present. This work proposes a novel method for link prediction in the bipartite network based on an ensemble of composite similarities, overcoming the issues of model-based and latent feature models. The proposed method analyzes the structure, neighborhood nodes as well as latent attributes between the nodes to predict the link in the network. To illustrate the proposed method, experiments are performed with five real-world data sets and compared with various state-of-art link prediction methods and it is inferred that this method outperforms with ~3% to ~9% higher using area under the precision-recall curve (AUC-PR) measure. This work holds great significance in the study of biological networks, e-commerce networks, complex web-based systems, networks of drug binding, enzyme protein, and other related networks in understanding the formation of such complex networks. Further, this study helps in link prediction and its usability for different purposes ranging from building intelligent systems to providing services in big data and web-based systems.

Model Optimization for Supporting Spiking Neural Networks on FPGA Hardware (FPGA상에서 스파이킹 뉴럴 네트워크 지원을 위한 모델 최적화)

  • Kim, Seoyeon;Yun, Young-Sun;Hong, Jiman;Kim, Bongjae;Lee, Keon Myung;Jung, Jinman
    • Smart Media Journal
    • /
    • v.11 no.2
    • /
    • pp.70-76
    • /
    • 2022
  • IoT application development using a cloud server causes problems such as data transmission and reception delay, network traffic, and cost for real-time processing support in network connected hardware. To solve this problem, edge cloud-based platforms can use neuromorphic hardware to enable fast data transfer. In this paper, we propose a model optimization method for supporting spiking neural networks on FPGA hardware. We focused on auto-adjusting network model parameters optimized for neuromorphic hardware. The proposed method performs optimization to show higher performance based on user requirements for accuracy. As a result of performance analysis, it satisfies all requirements of accuracy and showed higher performance in terms of expected execution time, unlike the naive method supported by the existing open source framework.

Development of Real-Time Optimal Bus Scheduling Models (실시간 버스 운행계획수립 모형 개발)

  • Kim, Wongil;Son, Bongsoo;Chung, Jin-Hyuk;Lee, Jeomho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5D
    • /
    • pp.587-595
    • /
    • 2008
  • Many studies on bus scheduling optimization have been done from the 1960s to recent years for establishing rational bus schedule plan that can improve convenience of bus passengers and minimize unnecessary runs. After 2000, as part of the Intelligent Transport Systems (ITS), the importance of the schedule management and providing schedule information through bus schedule optimization has become a big issue, and much research is being done to develop optimization models that will increase bus passenger convenience and, on the side of bus management, minimize unnecessary bus operation. The purpose of this study is to calculate the optimal bus frequency and create a timetable for each bus stop by applying DTR or DTRC model that use data for each bus stop and route segment. Model verification process was implemented using data collected from bus management system (BMS) and integrated transit-fare card system for bus route of Seoul's No. 472 line. In order to evaluate the reliability and uncertainty of optimal solution, sensitivity analysis was implemented for the various parameters and assumptions used in the bus scheduling model.

A Study on Estimate to Link Travel Time Using Traveling Data of Bus Information System (버스정보시스템(BIS) 운행자료를 이용한 링크통행시간 추정)

  • Lee, Young Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3D
    • /
    • pp.241-246
    • /
    • 2010
  • This study is to estimate the link travel time of road networks in urban areas utilizing traffic information which is collected throughout the operation of Bus Information System (BIS). BIS, which applies the hightech information technology to an existing bus system, has been developing and operating in many bodies including the local self-government entities. However, a study to consider the technology trend is relatively rare. Even though some useful traffic informations have been collected throughout the operation of an existing BIS, which set limits to the development of a future service of integrated analysis. Accordingly, in this study, a fundamental research is performed for traffic controls in urban areas and providing a traffic information for driver throughout the estimation of link travel time of road networks. The study is proceeded throughout the data collected from the operation of BIS (Bus Information System). The result showed that the patterns of going through traffic were divided up to 2 in the bus travel time in BIS then estimate two link travel time.