• Title/Summary/Keyword: Intelligent Control

Search Result 4,096, Processing Time 0.036 seconds

PThe Robust Control System Design using Intelligent Hybrid Self-Tuning Method (지능형 하이브리드 자기 동조 기법을 이용한 강건 제어기 설계)

  • 권혁창;하상형;서재용;조현찬;전홍태
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.05a
    • /
    • pp.325-329
    • /
    • 2003
  • This paper discuss the method of the system's efficient control using a Intelligent hybrid algorithm in nonlinear dynamics systems. Existing neural network and genetic algorithm for the control of non-linear systems work well in static states. but it be not particularly good in changeable states and must re-learn for the control of the system in the changed state. This time spend a lot of time. For the solution of this problem we suggest the intelligent hybrid self-tuning controller. it includes neural network, genetic algorithm and immune system. it is based on neural network, and immune system and genetic algorithm are added against a changed factor. We will call a change factor an antigen. When an antigen broke out, immune system come into action and genetic algorithm search an antibody. So the system is controled more stably and rapidly. Moreover, The Genetic algorithm use the memory address of the immune bank as a genetic factor. So it brings an advantage which the realization of a hardware easy.

  • PDF

Stable Intelligent Control of Chaotic Systems via Wavelet Neural Network

  • Choi, Jong-Tae;Choi, Yoon-Ho;Park, Jin-Bae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.316-321
    • /
    • 2003
  • This paper presents a design method of the wavelet neural network based controller using direct adaptive control method to deal with a stable intelligent control of chaotic systems. The various uncertainties, such as mechanical parametric variation, external disturbance, and unstructured uncertainty influence the control performance. However, the conventional control methods such as optimal control, adaptive control and robust control may not be feasible when an explicit, faithful mathematical model cannot be constructed. Therefore, an intelligent control system that is an on-line trained WNN controller based on direct adaptive control method with adaptive learning rates is proposed to control chaotic nonlinear systems whose mathematical models are not available. The adaptive learning rates are derived in the sense of discrete-type Lyapunov stability theorem, so that the convergence of the tracking error can be guaranteed in the closed-loop system. In the whole design process, the strict constrained conditions and prior knowledge of the controlled plant are not necessary due to the powerful learning ability of the proposed intelligent control system. The gradient-descent method is used for training a wavelet neural network controller of chaotic systems. Finally, the effectiveness and feasibility of the proposed control method is demonstrated with application to the chaotic systems.

  • PDF

Sensorless Speed Control of Induction motor using the Intelligent Speed Estimator (지능형 속도 추정기를 이용한 유도전동기의 센서리스 속도제어)

  • Park, Jin-Su;Choi, Sung-Dae;Kim, Sang-Hoon;Yoon, Kwang-Ho;Ban, Gi-Jong;Nam, Moon-Hyon;Kim, Lark-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.660-662
    • /
    • 2004
  • This paper proposes an Intelligent Speed Estimator in order to realize the speed-sensorless vector control of an induction motor. Intelligent Speed Estimator used Model Reference Adaptive System which has Fuzzy-Neural adaptive mechanism as Speed Estimation method. The Intelligent Speed Estimator estimates the speed of an induction motor with a rotor flux of a reference model and adjustable model in MRAS. The Intelligent Speed Estimator reduces the error of the rotor flux between the voltage flux model and the current flux model using the error and the change of error as input of the Estimator. The computer simulation is executed to verify the propriety and the effectiveness of the proposed speed estimator.

  • PDF

Tele-Manipulation of ROBHAZ-DT2 for Hazard Environment Applications

  • Ryu, Dong-Seok;Lee, Jong-Wha;Yoon, Seong-Sik;Kang, Sung-Chul;Song, Jae-Bok;Kim, Mun-Sang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2051-2056
    • /
    • 2003
  • In this paper, a tele-manipulation in explosive ordnance disposal(EOD) applications is discussed. The ROBHAZ-DT2 is developed as a teleoperated mobile manipulator for EOD. In general, it has been thought that the robot must have appropriate functions and accuracy enough to handle the complicated and dangerous mission. However, the research on the ROBHAZ-DT2 revealed that the teleoperation causes more restrictions and difficulties in EOD mission. Thus to solve the problem, a novel user interface for the ROBHAZ-DT2 is developed, in which the operator can interact with various human senses (i.e. visual, auditory and haptic sense). It enables an operator to control the ROBHAZ-DT2 simply and intuitively. A tele-manipulation control scheme for the ROBHAZ-DT2 is also proposed including compliance control via force feedback. It makes the robot adapt itself to circumstances, while the robot faithfully follows a command of the operator. This paper deals with a detailed description on the user interface and the tele-manipulation control for the ROBHAZ-DT2. An EOD demonstration is conducted to verify the validity of the proposed interface and the control scheme.

  • PDF

Fuzzy Pulse-Width-Modulated Feedback Control: Global Intelligent Digital Redesign Approach (퍼지 펄스폭 변조 궤환 제어: 전역적 지능형 디지털 재설계 접근법)

  • Lee Ho Jae;Joo Young Hoon;Park Jin Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.1
    • /
    • pp.92-97
    • /
    • 2005
  • This paper discusses an intelligent digital redesign technique for designing a fuzzy pulse-width-modulated (PWM) control. First when we are given a well-designed fuzzy analog control, the equivalent digital control is intelligently redesigned. Using the similar technique we intelligently redesign the fuzzy PWM control from the intelligently redesigned fuzzy digital control. A stabilizability of the intelligently redesigned PWM control is rigorously analyzed.

Intelligent Motor Control System Based on CIP (CIP 기반의 지능형 전동기 제어 시스템)

  • Kim, On;Choi, Seong-Jin
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.2
    • /
    • pp.307-312
    • /
    • 2020
  • This paper proposed intelligent motor control system that replaced smart motor devices, such as motor protection relays, smart circuit breakers and variable speed drives, with one integrated module to perform efficient motor control at industrial sites. The proposed intelligent motor control system provides easy monitoring of critical data for each motor or load connected to an intelligent motor control system over a CIP(Common Industrial Protocol)-based network, which enables accurate process control at all times, real-time access to fault information and records to simplify diagnosis and minimize equipment downtime.

Experimental Studies of Real- Time Decentralized Neural Network Control for an X-Y Table Robot

  • Cho, Hyun-Taek;Kim, Sung-Su;Jung, Seul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.3
    • /
    • pp.185-191
    • /
    • 2008
  • In this paper, experimental studies of a neural network (NN) control technique for non-model based position control of the x-y table robot are presented. Decentralized neural networks are used to control each axis of the x-y table robot separately. For an each neural network compensator, an inverse control technique is used. The neural network control technique called the reference compensation technique (RCT) is conceptually different from the existing neural controllers in that the NN controller compensates for uncertainties in the dynamical system by modifying desired trajectories. The back-propagation learning algorithm is developed in a real time DSP board for on-line learning. Practical real time position control experiments are conducted on the x-y table robot. Experimental results of using neural networks show more excellent position tracking than that of when PD controllers are used only.

Application of Neural Network for the Intelligent Control of Computer Aided Testing and Adjustment System (자동조정기능의 지능형제어를 위한 신경회로망 응용)

  • 구영모;이승구;이영민;우광방
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.1
    • /
    • pp.79-89
    • /
    • 1993
  • This paper deals with a computer aided control of an adjustment process for the complete electronic devices by means of an application of artificial neural network and an implementation of neuro-controller for intelligent control. Multi-layer neural network model is employed as artificial neural network with the learning method of the error back propagation. Information initially available from real plant under control are the initial values of plant output, and the augmented plant input and its corresponding plant output at that time. For the intelligent control of adjustment process utilizing artificial neural network, the neural network emulator (NNE) and the neural network controller(NNC) are developed. The initial weights of each neural network are determined through off line learning for the given product and it is also employed to cope with environments of the another product by on line learning. Computer simulation, as well as the application to the real situation of proposed intelligent control system is investigated.

  • PDF

Design of Robust Controller for the Steam Generator in the Nuclear Power Plant Using Intelligent Digital Redesign (지능형 디지털 재설계 기법을 이용한 원자력 발전소 증기발생기의 강인 제어기 설계)

  • 김주원;박진배;조광래;주영훈
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.05a
    • /
    • pp.203-206
    • /
    • 2002
  • This paper describes fuzzy control methodologies of the steam generator which have nonlinear characteristics in the nuclear power plant. Actually, the steam generator part of the power generator has a problem to control water level because it has complex components and nonlinear characteristics. In order to control nonlinear terms of the model, Takagj-Sugeno (75) fuzzy system is used to design a controller. In designing procedure, intelligent digital redesign method is used to control the nonlinear system. This digital controller keeps the performance of the analog controller. Simulation examples are included for ensuring the proposed control method.

  • PDF

Development of Intelligent Landscape Lighting Power Control and Monitoring System with Solar Cell Generator Equipment (태양광발전설비와 연계한 지능형 경관조명 전력제어 및 모니터링 시스템의 개발)

  • Kim, Dong-Wan;Park, Sung-Won;Kim, Hyung-Su
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.60 no.2
    • /
    • pp.99-104
    • /
    • 2011
  • In this paper, the intelligent landscape lighting power control and monitoring system with solar sell generator equipment is proposed. The first, the intelligent landscape lighting power controller is designed using the fuzzy logic control method. And the fuzzy logic controller is used to save power consumption for various reference intensity of the illumination. The second, the GUI monitoring system is presented. It has control and display faculty. And the practical experiment device is used to evaluate the performance criteria of the proposed intelligent landscape lighting power control system with the solar cell power generation equipment. From the experiment results, we present the property of proposed fuzzy controller such as steady state error, the tracking and power consumption characteristic for the reference intensity of illumination. And also we show the superiority of power control as well as the characteristic of GUI monitoring system in the proposed system.