• Title/Summary/Keyword: Intelligence Based Society

Search Result 2,914, Processing Time 0.036 seconds

Effects of firm strategies on customer acquisition of Software as a Service (SaaS) providers: A mediating and moderating role of SaaS technology maturity (SaaS 기업의 차별화 및 가격전략이 고객획득성과에 미치는 영향: SaaS 기술성숙도 수준의 매개효과 및 조절효과를 중심으로)

  • Chae, SeongWook;Park, Sungbum
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.3
    • /
    • pp.151-171
    • /
    • 2014
  • Firms today have sought management effectiveness and efficiency utilizing information technologies (IT). Numerous firms are outsourcing specific information systems functions to cope with their short of information resources or IT experts, or to reduce their capital cost. Recently, Software-as-a-Service (SaaS) as a new type of information system has become one of the powerful outsourcing alternatives. SaaS is software deployed as a hosted and accessed over the internet. It is regarded as the idea of on-demand, pay-per-use, and utility computing and is now being applied to support the core competencies of clients in areas ranging from the individual productivity area to the vertical industry and e-commerce area. In this study, therefore, we seek to quantify the value that SaaS has on business performance by examining the relationships among firm strategies, SaaS technology maturity, and business performance of SaaS providers. We begin by drawing from prior literature on SaaS, technology maturity and firm strategy. SaaS technology maturity is classified into three different phases such as application service providing (ASP), Web-native application, and Web-service application. Firm strategies are manipulated by the low-cost strategy and differentiation strategy. Finally, we considered customer acquisition as a business performance. In this sense, specific objectives of this study are as follows. First, we examine the relationships between customer acquisition performance and both low-cost strategy and differentiation strategy of SaaS providers. Secondly, we investigate the mediating and moderating effects of SaaS technology maturity on those relationships. For this purpose, study collects data from the SaaS providers, and their line of applications registered in the database in CNK (Commerce net Korea) in Korea using a questionnaire method by the professional research institution. The unit of analysis in this study is the SBUs (strategic business unit) in the software provider. A total of 199 SBUs is used for analyzing and testing our hypotheses. With regards to the measurement of firm strategy, we take three measurement items for differentiation strategy such as the application uniqueness (referring an application aims to differentiate within just one or a small number of target industry), supply channel diversification (regarding whether SaaS vendor had diversified supply chain) as well as the number of specialized expertise and take two items for low cost strategy like subscription fee and initial set-up fee. We employ a hierarchical regression analysis technique for testing moderation effects of SaaS technology maturity and follow the Baron and Kenny's procedure for determining if firm strategies affect customer acquisition through technology maturity. Empirical results revealed that, firstly, when differentiation strategy is applied to attain business performance like customer acquisition, the effects of the strategy is moderated by the technology maturity level of SaaS providers. In other words, securing higher level of SaaS technology maturity is essential for higher business performance. For instance, given that firms implement application uniqueness or a distribution channel diversification as a differentiation strategy, they can acquire more customers when their level of SaaS technology maturity is higher rather than lower. Secondly, results indicate that pursuing differentiation strategy or low cost strategy effectively works for SaaS providers' obtaining customer, which means that continuously differentiating their service from others or making their service fee (subscription fee or initial set-up fee) lower are helpful for their business success in terms of acquiring their customers. Lastly, results show that the level of SaaS technology maturity mediates the relationships between low cost strategy and customer acquisition. That is, based on our research design, customers usually perceive the real value of the low subscription fee or initial set-up fee only through the SaaS service provide by vender and, in turn, this will affect their decision making whether subscribe or not.

The Framework of Research Network and Performance Evaluation on Personal Information Security: Social Network Analysis Perspective (개인정보보호 분야의 연구자 네트워크와 성과 평가 프레임워크: 소셜 네트워크 분석을 중심으로)

  • Kim, Minsu;Choi, Jaewon;Kim, Hyun Jin
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.1
    • /
    • pp.177-193
    • /
    • 2014
  • Over the past decade, there has been a rapid diffusion of electronic commerce and a rising number of interconnected networks, resulting in an escalation of security threats and privacy concerns. Electronic commerce has a built-in trade-off between the necessity of providing at least some personal information to consummate an online transaction, and the risk of negative consequences from providing such information. More recently, the frequent disclosure of private information has raised concerns about privacy and its impacts. This has motivated researchers in various fields to explore information privacy issues to address these concerns. Accordingly, the necessity for information privacy policies and technologies for collecting and storing data, and information privacy research in various fields such as medicine, computer science, business, and statistics has increased. The occurrence of various information security accidents have made finding experts in the information security field an important issue. Objective measures for finding such experts are required, as it is currently rather subjective. Based on social network analysis, this paper focused on a framework to evaluate the process of finding experts in the information security field. We collected data from the National Discovery for Science Leaders (NDSL) database, initially collecting about 2000 papers covering the period between 2005 and 2013. Outliers and the data of irrelevant papers were dropped, leaving 784 papers to test the suggested hypotheses. The co-authorship network data for co-author relationship, publisher, affiliation, and so on were analyzed using social network measures including centrality and structural hole. The results of our model estimation are as follows. With the exception of Hypothesis 3, which deals with the relationship between eigenvector centrality and performance, all of our hypotheses were supported. In line with our hypothesis, degree centrality (H1) was supported with its positive influence on the researchers' publishing performance (p<0.001). This finding indicates that as the degree of cooperation increased, the more the publishing performance of researchers increased. In addition, closeness centrality (H2) was also positively associated with researchers' publishing performance (p<0.001), suggesting that, as the efficiency of information acquisition increased, the more the researchers' publishing performance increased. This paper identified the difference in publishing performance among researchers. The analysis can be used to identify core experts and evaluate their performance in the information privacy research field. The co-authorship network for information privacy can aid in understanding the deep relationships among researchers. In addition, extracting characteristics of publishers and affiliations, this paper suggested an understanding of the social network measures and their potential for finding experts in the information privacy field. Social concerns about securing the objectivity of experts have increased, because experts in the information privacy field frequently participate in political consultation, and business education support and evaluation. In terms of practical implications, this research suggests an objective framework for experts in the information privacy field, and is useful for people who are in charge of managing research human resources. This study has some limitations, providing opportunities and suggestions for future research. Presenting the difference in information diffusion according to media and proximity presents difficulties for the generalization of the theory due to the small sample size. Therefore, further studies could consider an increased sample size and media diversity, the difference in information diffusion according to the media type, and information proximity could be explored in more detail. Moreover, previous network research has commonly observed a causal relationship between the independent and dependent variable (Kadushin, 2012). In this study, degree centrality as an independent variable might have causal relationship with performance as a dependent variable. However, in the case of network analysis research, network indices could be computed after the network relationship is created. An annual analysis could help mitigate this limitation.

School Experiences and the Next Gate Path : An analysis of Univ. Student activity log (대학생의 학창경험이 사회 진출에 미치는 영향: 대학생활 활동 로그분석을 중심으로)

  • YI, EUNJU;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.4
    • /
    • pp.149-171
    • /
    • 2020
  • The period at university is to make decision about getting an actual job. As our society develops rapidly and highly, jobs are diversified, subdivided, and specialized, and students' job preparation period is also getting longer and longer. This study analyzed the log data of college students to see how the various activities that college students experience inside and outside of school might have influences on employment. For this experiment, students' various activities were systematically classified, recorded as an activity data and were divided into six core competencies (Job reinforcement competency, Leadership & teamwork competency, Globalization competency, Organizational commitment competency, Job exploration competency, and Autonomous implementation competency). The effect of the six competency levels on the employment status (employed group, unemployed group) was analyzed. As a result of the analysis, it was confirmed that the difference in level between the employed group and the unemployed group was significant for all of the six competencies, so it was possible to infer that the activities at the school are significant for employment. Next, in order to analyze the impact of the six competencies on the qualitative performance of employment, we had ANOVA analysis after dividing the each competency level into 2 groups (low and high group), and creating 6 groups by the range of first annual salary. Students with high levels of globalization capability, job search capability, and autonomous implementation capability were also found to belong to a higher annual salary group. The theoretical contributions of this study are as follows. First, it connects the competencies that can be extracted from the school experience with the competencies in the Human Resource Management field and adds job search competencies and autonomous implementation competencies which are required for university students to have their own successful career & life. Second, we have conducted this analysis with the competency data measured form actual activity and result data collected from the interview and research. Third, it analyzed not only quantitative performance (employment rate) but also qualitative performance (annual salary level). The practical use of this study is as follows. First, it can be a guide when establishing career development plans for college students. It is necessary to prepare for a job that can express one's strengths based on an analysis of the world of work and job, rather than having a no-strategy, unbalanced, or accumulating excessive specifications competition. Second, the person in charge of experience design for college students, at an organizations such as schools, businesses, local governments, and governments, can refer to the six competencies suggested in this study to for the user-useful experiences design that may motivate more participation. By doing so, one event may bring mutual benefits for both event designers and students. Third, in the era of digital transformation, the government's policy manager who envisions the balanced development of the country can make a policy in the direction of achieving the curiosity and energy of college students together with the balanced development of the country. A lot of manpower is required to start up novel platform services that have not existed before or to digitize existing analog products, services and corporate culture. The activities of current digital-generation-college-students are not only catalysts in all industries, but also for very benefit and necessary for college students by themselves for their own successful career development.

Emoticon by Emotions: The Development of an Emoticon Recommendation System Based on Consumer Emotions (Emoticon by Emotions: 소비자 감성 기반 이모티콘 추천 시스템 개발)

  • Kim, Keon-Woo;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.227-252
    • /
    • 2018
  • The evolution of instant communication has mirrored the development of the Internet and messenger applications are among the most representative manifestations of instant communication technologies. In messenger applications, senders use emoticons to supplement the emotions conveyed in the text of their messages. The fact that communication via messenger applications is not face-to-face makes it difficult for senders to communicate their emotions to message recipients. Emoticons have long been used as symbols that indicate the moods of speakers. However, at present, emoticon-use is evolving into a means of conveying the psychological states of consumers who want to express individual characteristics and personality quirks while communicating their emotions to others. The fact that companies like KakaoTalk, Line, Apple, etc. have begun conducting emoticon business and sales of related content are expected to gradually increase testifies to the significance of this phenomenon. Nevertheless, despite the development of emoticons themselves and the growth of the emoticon market, no suitable emoticon recommendation system has yet been developed. Even KakaoTalk, a messenger application that commands more than 90% of domestic market share in South Korea, just grouped in to popularity, most recent, or brief category. This means consumers face the inconvenience of constantly scrolling around to locate the emoticons they want. The creation of an emoticon recommendation system would improve consumer convenience and satisfaction and increase the sales revenue of companies the sell emoticons. To recommend appropriate emoticons, it is necessary to quantify the emotions that the consumer sees and emotions. Such quantification will enable us to analyze the characteristics and emotions felt by consumers who used similar emoticons, which, in turn, will facilitate our emoticon recommendations for consumers. One way to quantify emoticons use is metadata-ization. Metadata-ization is a means of structuring or organizing unstructured and semi-structured data to extract meaning. By structuring unstructured emoticon data through metadata-ization, we can easily classify emoticons based on the emotions consumers want to express. To determine emoticons' precise emotions, we had to consider sub-detail expressions-not only the seven common emotional adjectives but also the metaphorical expressions that appear only in South Korean proved by previous studies related to emotion focusing on the emoticon's characteristics. We therefore collected the sub-detail expressions of emotion based on the "Shape", "Color" and "Adumbration". Moreover, to design a highly accurate recommendation system, we considered both emotion-technical indexes and emoticon-emotional indexes. We then identified 14 features of emoticon-technical indexes and selected 36 emotional adjectives. The 36 emotional adjectives consisted of contrasting adjectives, which we reduced to 18, and we measured the 18 emotional adjectives using 40 emoticon sets randomly selected from the top-ranked emoticons in the KakaoTalk shop. We surveyed 277 consumers in their mid-twenties who had experience purchasing emoticons; we recruited them online and asked them to evaluate five different emoticon sets. After data acquisition, we conducted a factor analysis of emoticon-emotional factors. We extracted four factors that we named "Comic", Softness", "Modernity" and "Transparency". We analyzed both the relationship between indexes and consumer attitude and the relationship between emoticon-technical indexes and emoticon-emotional factors. Through this process, we confirmed that the emoticon-technical indexes did not directly affect consumer attitudes but had a mediating effect on consumer attitudes through emoticon-emotional factors. The results of the analysis revealed the mechanism consumers use to evaluate emoticons; the results also showed that consumers' emoticon-technical indexes affected emoticon-emotional factors and that the emoticon-emotional factors affected consumer satisfaction. We therefore designed the emoticon recommendation system using only four emoticon-emotional factors; we created a recommendation method to calculate the Euclidean distance from each factors' emotion. In an attempt to increase the accuracy of the emoticon recommendation system, we compared the emotional patterns of selected emoticons with the recommended emoticons. The emotional patterns corresponded in principle. We verified the emoticon recommendation system by testing prediction accuracy; the predictions were 81.02% accurate in the first result, 76.64% accurate in the second, and 81.63% accurate in the third. This study developed a methodology that can be used in various fields academically and practically. We expect that the novel emoticon recommendation system we designed will increase emoticon sales for companies who conduct business in this domain and make consumer experiences more convenient. In addition, this study served as an important first step in the development of an intelligent emoticon recommendation system. The emotional factors proposed in this study could be collected in an emotional library that could serve as an emotion index for evaluation when new emoticons are released. Moreover, by combining the accumulated emotional library with company sales data, sales information, and consumer data, companies could develop hybrid recommendation systems that would bolster convenience for consumers and serve as intellectual assets that companies could strategically deploy.

SKU recommender system for retail stores that carry identical brands using collaborative filtering and hybrid filtering (협업 필터링 및 하이브리드 필터링을 이용한 동종 브랜드 판매 매장간(間) 취급 SKU 추천 시스템)

  • Joe, Denis Yongmin;Nam, Kihwan
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.4
    • /
    • pp.77-110
    • /
    • 2017
  • Recently, the diversification and individualization of consumption patterns through the web and mobile devices based on the Internet have been rapid. As this happens, the efficient operation of the offline store, which is a traditional distribution channel, has become more important. In order to raise both the sales and profits of stores, stores need to supply and sell the most attractive products to consumers in a timely manner. However, there is a lack of research on which SKUs, out of many products, can increase sales probability and reduce inventory costs. In particular, if a company sells products through multiple in-store stores across multiple locations, it would be helpful to increase sales and profitability of stores if SKUs appealing to customers are recommended. In this study, the recommender system (recommender system such as collaborative filtering and hybrid filtering), which has been used for personalization recommendation, is suggested by SKU recommendation method of a store unit of a distribution company that handles a homogeneous brand through a plurality of sales stores by country and region. We calculated the similarity of each store by using the purchase data of each store's handling items, filtering the collaboration according to the sales history of each store by each SKU, and finally recommending the individual SKU to the store. In addition, the store is classified into four clusters through PCA (Principal Component Analysis) and cluster analysis (Clustering) using the store profile data. The recommendation system is implemented by the hybrid filtering method that applies the collaborative filtering in each cluster and measured the performance of both methods based on actual sales data. Most of the existing recommendation systems have been studied by recommending items such as movies and music to the users. In practice, industrial applications have also become popular. In the meantime, there has been little research on recommending SKUs for each store by applying these recommendation systems, which have been mainly dealt with in the field of personalization services, to the store units of distributors handling similar brands. If the recommendation method of the existing recommendation methodology was 'the individual field', this study expanded the scope of the store beyond the individual domain through a plurality of sales stores by country and region and dealt with the store unit of the distribution company handling the same brand SKU while suggesting a recommendation method. In addition, if the existing recommendation system is limited to online, it is recommended to apply the data mining technique to develop an algorithm suitable for expanding to the store area rather than expanding the utilization range offline and analyzing based on the existing individual. The significance of the results of this study is that the personalization recommendation algorithm is applied to a plurality of sales outlets handling the same brand. A meaningful result is derived and a concrete methodology that can be constructed and used as a system for actual companies is proposed. It is also meaningful that this is the first attempt to expand the research area of the academic field related to the existing recommendation system, which was focused on the personalization domain, to a sales store of a company handling the same brand. From 05 to 03 in 2014, the number of stores' sales volume of the top 100 SKUs are limited to 52 SKUs by collaborative filtering and the hybrid filtering method SKU recommended. We compared the performance of the two recommendation methods by totaling the sales results. The reason for comparing the two recommendation methods is that the recommendation method of this study is defined as the reference model in which offline collaborative filtering is applied to demonstrate higher performance than the existing recommendation method. The results of this model are compared with the Hybrid filtering method, which is a model that reflects the characteristics of the offline store view. The proposed method showed a higher performance than the existing recommendation method. The proposed method was proved by using actual sales data of large Korean apparel companies. In this study, we propose a method to extend the recommendation system of the individual level to the group level and to efficiently approach it. In addition to the theoretical framework, which is of great value.

A Study on The 'Kao Zheng Pai'(考證派) of The Traditional Medicine of Japan (일본 '고증파(考證派)' 의학에 관한 연구)

  • Park, Hyun-Kuk;Kim, Ki-Wook
    • Journal of Korean Medical classics
    • /
    • v.20 no.4
    • /
    • pp.211-250
    • /
    • 2007
  • 1. The 'Kao Zheng Pai(考證派) comes from the 'Zhe Zhong Pai' and is a school that is influenced by the confucianism of the Qing dynasty. In Japan Inoue Kinga(井上金娥), Yoshida Koton(吉田篁墩) became central members, and the rise of the methodology of historical research(考證學) influenced the members of the 'Zhe Zhong Pai', and the trend of historical research changed from confucianism to medicine, making a school of medicine based on the study of texts and proving that the classics were right. 2. Based on the function of 'Nei Qu Li '(內驅力) the 'Kao Zheng Pai', in the spirit of 'use confucianism as the base', researched letters, meanings and historical origins. Because they were influenced by the methodology of historical research(考證學) of the Qing era, they valued the evidential research of classic texts, and there was even one branch that did only historical research, the 'Rue Xue Kao Zheng Pai'(儒學考證派). Also, the 'Yi Xue Kao Zheng Pai'(醫學考證派) appeared by the influence of Yoshida Kouton and Kariya Ekisai(狩谷掖齋). 3. In the 'Kao Zheng Pai(考證派)'s theories and views the 'Yi Xue Kao Zheng Pai' did not look at medical scriptures like the "Huang Di Nei Jing"("黃帝內經") and did not do research on 'medical' related areas like acupuncture, the meridian and medicinal herbs. Since they were doctors that used medicine, they naturally were based on 'formulas'(方劑) and since their thoughts were based on the historical ideologies, they valued the "Shang Han Ja Bing Lun" which was revered as the 'ancestor of all formulas'(衆方之祖). 4. The lives of the important doctors of the 'Kao Zheng Pai' Meguro Dotaku(目黑道琢) Yamada Seichin(山田正珍), Yamada Kyoko(山田業廣), Mori Ritsi(森立之) Kitamura Naohara(喜多村直寬) are as follows. 1) Meguro Dotaku(目黑道琢 1739${\sim}$1798) was born of lowly descent but, using his intelligence and knowledge, became a professor as a Shi Jing Yi(市井醫) and as a professor for 34 years at Ji Shou Guan mastered the "Huang Di Nei Jing" after giving over 300 lectures. Since his pupil, Isawara Ken taught the Lan Men Wu Zhe(蘭門五哲) and Shibue Chusai, Mori Ritsi(森立之), Okanishi Gentei(岡西玄亭), Kiyokawa Gendoh(淸川玄道) and Yamada Kyoko(山田業廣), Meguro Dotaku is considered the founder of the 'Yi Xue Kao Zheng Pai'. 2) The family of Yamada Seichin(山田正珍 1749${\sim}$1787) had been medical officials in the Makufu(幕府) and the many books that his ancestors had left were the base of his art. Seichin learned from Shan Ben Bei Shan(山本北山), a 'Zhe Zhong Pai' scholar, and put his efforts into learning, teaching and researching the "Shang Han Lun"("傷寒論"). Living in a time between 'Gu Fang Pai'(古方派) member Nakanishi Goretada(中西惟忠) and 'Kao Zheng Pai' member Taki Motohiro(多紀元簡), he wrote 11 books, 2 of which express his thoughts and research clearly, the "Shang Han Lun Ji Cheng"("傷寒論集成") and "Shang Han Kao"("傷寒考"). His comparison of the 'six meridians'(3 yin, 3 yang) between the "Shang Han Lun" and the "Su Wen Re Lun"("素問 熱論) and his acknowledgement of the need and rationality of the concept of Yin-Yang and Deficient-Replete distinguishes him from the other 'Gu Fang Pai'. Also, his dissertation of the need for the concept doesn't use the theories of latter schools but uses the theory of the "Shang Han Lun" itself. He even researched the historical parts, such as terms like 'Shen Nong Chang Bai Cao'(神農嘗百草) and 'Cheng Qi Tang'(承氣湯) 3) The ancestor of Yamada Kyoko(山田業廣) was a court physician, and learned confucianism from Kao Zheng Pai 's Ashikawa Genan(朝川善庵) and medicine from Isawa Ranken and Taki Motokata(多紀元堅), and the secret to smallpox from Ikeda Keisui(池田京水). He later became a lecturer at the Edo Yi Xue Guan(醫學館) and was invited as the director to the Ji Zhong(濟衆) hospital. He also became the first owner of the Wen Zhi She(溫知社), whose main purpose was the revival of kampo, and launched the monthly magazine Wen Zi Yi Tan(溫知醫談). He also diagnosed and prescribed for the prince Ming Gong(明宮). His works include the "Jing Fang Bian"("經方辨"), "Shang Han Lun Si Ci"("傷寒論釋司"), "Huang Zhao Zhu Jia Zhi Yan Ji Yao"("皇朝諸家治驗集要") and "Shang Han Ja Bing Lun Lei Juan"("傷寒雜病論類纂"). of these, the "Jing Fang Bian"("經方辨") states that the Shi Gao(石膏) used in the "Shang Han Lun" had three meanings-Fa Biao(發表), Qing Re(淸熱), Zi Yin(滋陰)-which were from 'symptoms', and first deducted the effects and then told of the reason. Another book, the "Jiu Zhe Tang Du Shu Ji"("九折堂讀書記") researched and translated the difficult parts of the "Shang Han Lun", "Jin Qui Yao Lue", "Qian Jin Fang"("千金方"), and "Wai Tai Mi Yao"("外臺秘要"). He usually analyzed the 'symptoms' of diseases but the composition, measurement, processing and application of medicine were all in the spectrum of 'analystic research' and 'researching analysis'. 4) The ancestors of Mori Rits(森立之 1807${\sim}$ 1885) were warriors but he became a doctor by the will of his mother, and he learned from Shibue Chosai(澁江抽齋) and Isawaran Ken and later became a pupil of Shou Gu Yi Zhai, a historical research scholar. He then became a lecturer of medical herbs at the Yi Xue Guan, and later participated in the proofreading of "Yi Xin Fang"("醫心方") and with Chosai compiled the "Jing Ji Fang Gu Zhi"("神農本草經"). He visited the Chinese scholar Yang Shou Jing(楊守敬) in 1881 and exchanged books and ideas. Of his works, there are the collections(輯複本) of "Shen Nong Ben Cao Jing"(神農本草經) and "You Xiang Yi Hwa"("遊相醫話") and the records, notes, poems, and diaries such as "Zhi Yuan Man Lu"("枳園漫錄") and "Zhi Yuan Sui Bi"("枳園隨筆") that were not published. His thoughts were that in restoring the "Shen Nong Ben Cao Jing", "the herb to the doctor is like the "Shuo Wen Jie Zi"("說文解字") to the scholar", and he tried to restore the ancient herbal text using knowledge of medicine and investigation(考據). Also with Chosai he compiled the "Jing Ji Fang Gu Zhi"("經籍訪古志") using knowledge of ancient text. Ritzi left works on pure investigation, paid much attention to social problems, and through 12 years of poverty treated all people and animals in all branches of medicine, so he is called a 'half confucianist half doctor'(半儒半醫). 5) Kitamurana Ohira(喜多村直寬 1804${\sim}$1876) learned scriptures and ancient texts from confucian scholar Asaka Gonsai, and learned medicine from his father Huai Yaun(槐園). He became a teacher in the Yi Xue Guan in his middle ages, and to repay his country, he printed 266 volumes of "Yi Fang Lei Ju("醫方類聚") and 1000 volumes of "Tai Ping Yu Lan"("太平禦覽") and devoted it to his country to be spread. His works are about 40 volumes including "Jin Qui Yao Lue Shu Yi" and "Lao Yi Zhi Yan" but most of them are researches on the "Shang Han Za Bing Lun". In his "Shang Han Lun Shu Yi"("傷寒論疏義") he shows the concept of the six meridians through the Yin-Yang, Superficial or internal, cold or hot, deficient or replete state of diseases, but did not match the names with the six meridians of the meridian theory, and this has something in common with the research based on the confucianism of Song(宋儒). In clinical treatment he was positive toward old and new methods and also the experience of civilians, but was negative toward western medicine. 6) The ancestor of the Taki family Tanbano Yasuyori(丹波康賴 912-955) became a Yi Bo Shi(醫博士) by his medical skills and compiled the "Yi Xin Fang"("醫心方"). His first son Tanbano Shigeaki(丹波重明) inherited the Shi Yao Yuan(施藥院) and the third son Tanbano Masatada(丹波雅忠) inherited the Dian You Tou(典藥頭). Masatada's descendents succeeded him for 25 generations until the family name was changed to Jin Bao(金保) and five generations later it was changed again to Duo Ji(多紀). The research scholar Taki Motohiro was in the third generation after the last name was changed to Taki, and his family kept an important part in the line of medical officers in Japan. Taki Motohiro(多紀元簡 1755-1810) was a teacher in the Yi Xue Guan where his father was residing, and became the physician for the general Jia Qi(家齊). He had a short temper and was not good at getting on in the world, and went against the will of the king and was banished from Ao Yi Shi(奧醫師). His most famous works, the "Shang Han Lun Ji Yi" and "Jin Qui Yao Lue Ji Yi" are the work of 20 years of collecting the theories of many schools and discussing, and is one of the most famous books on the "Shang Han Lun" in Japan. "Yi Sheng" is a collection of essays on research. Also there are the "Su Wen Shi"("素問識"), "Ling Shu Shi"("靈樞識"), and the "Guan lu Fang Yao Bu"("觀聚方要補"). Taki Motohiro(多紀元簡)'s position was succeeded by his third son Yuan Yin(元胤 1789-1827), and his works include works of research such as "Nan Jing Shu Jeng"("難經疏證"), "Ti Ya"("體雅"), "Yao Ya"("藥雅"), "Ji Ya"("疾雅"), "Ming Yi Gong An"("名醫公案"), and "Yi Ji Kao"("醫籍考"). The "Yi Ji Kao" is 80 volumes in length and lists about 3000 books on medicine in China before the Qing Dao Guang(道光), and under each title are the origin, number of volumes, state of existence, and, if possible, the preface, Ba Yu(跋語) and biography of the author. The younger sibling of Yuan Yin(元胤 1789-1827), Yuan Jian(元堅 1795-1857) expounded ancient writings at the Yi Xue Guan only after he reached middle age, was chosen for the Ao Yi Shi(奧醫師) and later became a Fa Yan(法眼), Fa Yin(法印) and Yu Chi(樂匙). He left about 15 texts, including "Su Wen Shao Shi"("素間紹識"), "Yi Xin Fang"("醫心方"), published in school, "Za Bing Guang Yao"("雜病廣要"), "Shang Han Guang Yao"(傷寒廣要), and "Zhen Fu Yao Jue"("該腹要訣"). On the Taki family's founding and working of the Yi Xue Guan Yasuka Doumei(失數道明) said they were "the people who took the initiative in Edo era kampo medicine" and evaluated their deeds in the fields of 'research of ancient text', 'the founding of Ji Shou Guan and medical education', 'publication business', 'writing of medical text'. 5. The doctors of the 'Kao Zheng Pai ' based their operations on the Edo Yi Xue Guan, and made groups with people with similar ideas to them, making a relationship 'net'. For example the three families of Duo Ji(多紀), Tang Chuan(湯川) and Xi Duo Cun(喜多村) married and adopted with and from each other and made prefaces and epitaphs for each other. Thus, the Taki family, the state science of the Makufu, the tendency of thinking, one's own interests and glory, one's own knowledge, the need of the society all played a role in the development of kampo medicine in the 18th and 19th century.

  • PDF

The Characteristics and Performances of Manufacturing SMEs that Utilize Public Information Support Infrastructure (공공 정보지원 인프라 활용한 제조 중소기업의 특징과 성과에 관한 연구)

  • Kim, Keun-Hwan;Kwon, Taehoon;Jun, Seung-pyo
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.4
    • /
    • pp.1-33
    • /
    • 2019
  • The small and medium sized enterprises (hereinafter SMEs) are already at a competitive disadvantaged when compared to large companies with more abundant resources. Manufacturing SMEs not only need a lot of information needed for new product development for sustainable growth and survival, but also seek networking to overcome the limitations of resources, but they are faced with limitations due to their size limitations. In a new era in which connectivity increases the complexity and uncertainty of the business environment, SMEs are increasingly urged to find information and solve networking problems. In order to solve these problems, the government funded research institutes plays an important role and duty to solve the information asymmetry problem of SMEs. The purpose of this study is to identify the differentiating characteristics of SMEs that utilize the public information support infrastructure provided by SMEs to enhance the innovation capacity of SMEs, and how they contribute to corporate performance. We argue that we need an infrastructure for providing information support to SMEs as part of this effort to strengthen of the role of government funded institutions; in this study, we specifically identify the target of such a policy and furthermore empirically demonstrate the effects of such policy-based efforts. Our goal is to help establish the strategies for building the information supporting infrastructure. To achieve this purpose, we first classified the characteristics of SMEs that have been found to utilize the information supporting infrastructure provided by government funded institutions. This allows us to verify whether selection bias appears in the analyzed group, which helps us clarify the interpretative limits of our study results. Next, we performed mediator and moderator effect analysis for multiple variables to analyze the process through which the use of information supporting infrastructure led to an improvement in external networking capabilities and resulted in enhancing product competitiveness. This analysis helps identify the key factors we should focus on when offering indirect support to SMEs through the information supporting infrastructure, which in turn helps us more efficiently manage research related to SME supporting policies implemented by government funded institutions. The results of this study showed the following. First, SMEs that used the information supporting infrastructure were found to have a significant difference in size in comparison to domestic R&D SMEs, but on the other hand, there was no significant difference in the cluster analysis that considered various variables. Based on these findings, we confirmed that SMEs that use the information supporting infrastructure are superior in size, and had a relatively higher distribution of companies that transact to a greater degree with large companies, when compared to the SMEs composing the general group of SMEs. Also, we found that companies that already receive support from the information infrastructure have a high concentration of companies that need collaboration with government funded institution. Secondly, among the SMEs that use the information supporting infrastructure, we found that increasing external networking capabilities contributed to enhancing product competitiveness, and while this was no the effect of direct assistance, we also found that indirect contributions were made by increasing the open marketing capabilities: in other words, this was the result of an indirect-only mediator effect. Also, the number of times the company received additional support in this process through mentoring related to information utilization was found to have a mediated moderator effect on improving external networking capabilities and in turn strengthening product competitiveness. The results of this study provide several insights that will help establish policies. KISTI's information support infrastructure may lead to the conclusion that marketing is already well underway, but it intentionally supports groups that enable to achieve good performance. As a result, the government should provide clear priorities whether to support the companies in the underdevelopment or to aid better performance. Through our research, we have identified how public information infrastructure contributes to product competitiveness. Here, we can draw some policy implications. First, the public information support infrastructure should have the capability to enhance the ability to interact with or to find the expert that provides required information. Second, if the utilization of public information support (online) infrastructure is effective, it is not necessary to continuously provide informational mentoring, which is a parallel offline support. Rather, offline support such as mentoring should be used as an appropriate device for abnormal symptom monitoring. Third, it is required that SMEs should improve their ability to utilize, because the effect of enhancing networking capacity through public information support infrastructure and enhancing product competitiveness through such infrastructure appears in most types of companies rather than in specific SMEs.

A Comparative Analysis of Social Commerce and Open Market Using User Reviews in Korean Mobile Commerce (사용자 리뷰를 통한 소셜커머스와 오픈마켓의 이용경험 비교분석)

  • Chae, Seung Hoon;Lim, Jay Ick;Kang, Juyoung
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.4
    • /
    • pp.53-77
    • /
    • 2015
  • Mobile commerce provides a convenient shopping experience in which users can buy products without the constraints of time and space. Mobile commerce has already set off a mega trend in Korea. The market size is estimated at approximately 15 trillion won (KRW) for 2015, thus far. In the Korean market, social commerce and open market are key components. Social commerce has an overwhelming open market in terms of the number of users in the Korean mobile commerce market. From the point of view of the industry, quick market entry, and content curation are considered to be the major success factors, reflecting the rapid growth of social commerce in the market. However, academics' empirical research and analysis to prove the success rate of social commerce is still insufficient. Henceforward, it is to be expected that social commerce and the open market in the Korean mobile commerce will compete intensively. So it is important to conduct an empirical analysis to prove the differences in user experience between social commerce and open market. This paper is an exploratory study that shows a comparative analysis of social commerce and the open market regarding user experience, which is based on the mobile users' reviews. Firstly, this study includes a collection of approximately 10,000 user reviews of social commerce and open market listed Google play. A collection of mobile user reviews were classified into topics, such as perceived usefulness and perceived ease of use through LDA topic modeling. Then, a sentimental analysis and co-occurrence analysis on the topics of perceived usefulness and perceived ease of use was conducted. The study's results demonstrated that social commerce users have a more positive experience in terms of service usefulness and convenience versus open market in the mobile commerce market. Social commerce has provided positive user experiences to mobile users in terms of service areas, like 'delivery,' 'coupon,' and 'discount,' while open market has been faced with user complaints in terms of technical problems and inconveniences like 'login error,' 'view details,' and 'stoppage.' This result has shown that social commerce has a good performance in terms of user service experience, since the aggressive marketing campaign conducted and there have been investments in building logistics infrastructure. However, the open market still has mobile optimization problems, since the open market in mobile commerce still has not resolved user complaints and inconveniences from technical problems. This study presents an exploratory research method used to analyze user experience by utilizing an empirical approach to user reviews. In contrast to previous studies, which conducted surveys to analyze user experience, this study was conducted by using empirical analysis that incorporates user reviews for reflecting users' vivid and actual experiences. Specifically, by using an LDA topic model and TAM this study presents its methodology, which shows an analysis of user reviews that are effective due to the method of dividing user reviews into service areas and technical areas from a new perspective. The methodology of this study has not only proven the differences in user experience between social commerce and open market, but also has provided a deep understanding of user experience in Korean mobile commerce. In addition, the results of this study have important implications on social commerce and open market by proving that user insights can be utilized in establishing competitive and groundbreaking strategies in the market. The limitations and research direction for follow-up studies are as follows. In a follow-up study, it will be required to design a more elaborate technique of the text analysis. This study could not clearly refine the user reviews, even though the ones online have inherent typos and mistakes. This study has proven that the user reviews are an invaluable source to analyze user experience. The methodology of this study can be expected to further expand comparative research of services using user reviews. Even at this moment, users around the world are posting their reviews about service experiences after using the mobile game, commerce, and messenger applications.

Methods for Integration of Documents using Hierarchical Structure based on the Formal Concept Analysis (FCA 기반 계층적 구조를 이용한 문서 통합 기법)

  • Kim, Tae-Hwan;Jeon, Ho-Cheol;Choi, Joong-Min
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.3
    • /
    • pp.63-77
    • /
    • 2011
  • The World Wide Web is a very large distributed digital information space. From its origins in 1991, the web has grown to encompass diverse information resources as personal home pasges, online digital libraries and virtual museums. Some estimates suggest that the web currently includes over 500 billion pages in the deep web. The ability to search and retrieve information from the web efficiently and effectively is an enabling technology for realizing its full potential. With powerful workstations and parallel processing technology, efficiency is not a bottleneck. In fact, some existing search tools sift through gigabyte.syze precompiled web indexes in a fraction of a second. But retrieval effectiveness is a different matter. Current search tools retrieve too many documents, of which only a small fraction are relevant to the user query. Furthermore, the most relevant documents do not nessarily appear at the top of the query output order. Also, current search tools can not retrieve the documents related with retrieved document from gigantic amount of documents. The most important problem for lots of current searching systems is to increase the quality of search. It means to provide related documents or decrease the number of unrelated documents as low as possible in the results of search. For this problem, CiteSeer proposed the ACI (Autonomous Citation Indexing) of the articles on the World Wide Web. A "citation index" indexes the links between articles that researchers make when they cite other articles. Citation indexes are very useful for a number of purposes, including literature search and analysis of the academic literature. For details of this work, references contained in academic articles are used to give credit to previous work in the literature and provide a link between the "citing" and "cited" articles. A citation index indexes the citations that an article makes, linking the articleswith the cited works. Citation indexes were originally designed mainly for information retrieval. The citation links allow navigating the literature in unique ways. Papers can be located independent of language, and words in thetitle, keywords or document. A citation index allows navigation backward in time (the list of cited articles) and forwardin time (which subsequent articles cite the current article?) But CiteSeer can not indexes the links between articles that researchers doesn't make. Because it indexes the links between articles that only researchers make when they cite other articles. Also, CiteSeer is not easy to scalability. Because CiteSeer can not indexes the links between articles that researchers doesn't make. All these problems make us orient for designing more effective search system. This paper shows a method that extracts subject and predicate per each sentence in documents. A document will be changed into the tabular form that extracted predicate checked value of possible subject and object. We make a hierarchical graph of a document using the table and then integrate graphs of documents. The graph of entire documents calculates the area of document as compared with integrated documents. We mark relation among the documents as compared with the area of documents. Also it proposes a method for structural integration of documents that retrieves documents from the graph. It makes that the user can find information easier. We compared the performance of the proposed approaches with lucene search engine using the formulas for ranking. As a result, the F.measure is about 60% and it is better as about 15%.

Business Application of Convolutional Neural Networks for Apparel Classification Using Runway Image (합성곱 신경망의 비지니스 응용: 런웨이 이미지를 사용한 의류 분류를 중심으로)

  • Seo, Yian;Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.3
    • /
    • pp.1-19
    • /
    • 2018
  • Large amount of data is now available for research and business sectors to extract knowledge from it. This data can be in the form of unstructured data such as audio, text, and image data and can be analyzed by deep learning methodology. Deep learning is now widely used for various estimation, classification, and prediction problems. Especially, fashion business adopts deep learning techniques for apparel recognition, apparel search and retrieval engine, and automatic product recommendation. The core model of these applications is the image classification using Convolutional Neural Networks (CNN). CNN is made up of neurons which learn parameters such as weights while inputs come through and reach outputs. CNN has layer structure which is best suited for image classification as it is comprised of convolutional layer for generating feature maps, pooling layer for reducing the dimensionality of feature maps, and fully-connected layer for classifying the extracted features. However, most of the classification models have been trained using online product image, which is taken under controlled situation such as apparel image itself or professional model wearing apparel. This image may not be an effective way to train the classification model considering the situation when one might want to classify street fashion image or walking image, which is taken in uncontrolled situation and involves people's movement and unexpected pose. Therefore, we propose to train the model with runway apparel image dataset which captures mobility. This will allow the classification model to be trained with far more variable data and enhance the adaptation with diverse query image. To achieve both convergence and generalization of the model, we apply Transfer Learning on our training network. As Transfer Learning in CNN is composed of pre-training and fine-tuning stages, we divide the training step into two. First, we pre-train our architecture with large-scale dataset, ImageNet dataset, which consists of 1.2 million images with 1000 categories including animals, plants, activities, materials, instrumentations, scenes, and foods. We use GoogLeNet for our main architecture as it has achieved great accuracy with efficiency in ImageNet Large Scale Visual Recognition Challenge (ILSVRC). Second, we fine-tune the network with our own runway image dataset. For the runway image dataset, we could not find any previously and publicly made dataset, so we collect the dataset from Google Image Search attaining 2426 images of 32 major fashion brands including Anna Molinari, Balenciaga, Balmain, Brioni, Burberry, Celine, Chanel, Chloe, Christian Dior, Cividini, Dolce and Gabbana, Emilio Pucci, Ermenegildo, Fendi, Giuliana Teso, Gucci, Issey Miyake, Kenzo, Leonard, Louis Vuitton, Marc Jacobs, Marni, Max Mara, Missoni, Moschino, Ralph Lauren, Roberto Cavalli, Sonia Rykiel, Stella McCartney, Valentino, Versace, and Yve Saint Laurent. We perform 10-folded experiments to consider the random generation of training data, and our proposed model has achieved accuracy of 67.2% on final test. Our research suggests several advantages over previous related studies as to our best knowledge, there haven't been any previous studies which trained the network for apparel image classification based on runway image dataset. We suggest the idea of training model with image capturing all the possible postures, which is denoted as mobility, by using our own runway apparel image dataset. Moreover, by applying Transfer Learning and using checkpoint and parameters provided by Tensorflow Slim, we could save time spent on training the classification model as taking 6 minutes per experiment to train the classifier. This model can be used in many business applications where the query image can be runway image, product image, or street fashion image. To be specific, runway query image can be used for mobile application service during fashion week to facilitate brand search, street style query image can be classified during fashion editorial task to classify and label the brand or style, and website query image can be processed by e-commerce multi-complex service providing item information or recommending similar item.