• Title/Summary/Keyword: Integrated Navigation System

Search Result 545, Processing Time 0.022 seconds

INS/Multi-Vision Integrated Navigation System Based on Landmark (다수의 비전 센서와 INS를 활용한 랜드마크 기반의 통합 항법시스템)

  • Kim, Jong-Myeong;Leeghim, Henzeh
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.8
    • /
    • pp.671-677
    • /
    • 2017
  • A new INS/Vision integrated navigation system by using multi-vision sensors is addressed in this paper. When the total number of landmark measured by the vision sensor is smaller than the allowable number, there is possibility that the navigation filter can diverge. To prevent this problem, multi-vision concept is applied to expend the field of view so that reliable number of landmarks are always guaranteed. In this work, the orientation of camera installed are 0, 120, and -120degree with respect to the body frame to improve the observability. Finally, the proposed technique is verified by using numerical simulation.

Development of Navigation HILS System for Integrated Navigation Performance Analysis of Large Diameter Unmanned Underwater Vehicle (LDUUV) (대형급 탐색용 무인잠수정 복합항법 성능 분석을 위한 항법 HILS 시스템 개발)

  • Yoo, Tae-Suk;Kim, Moon Hwan;Hwang, Jong Hyun;Yoon, Seon Il
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.5
    • /
    • pp.367-373
    • /
    • 2016
  • This paper describes the development of a navigation HILS (hardware in the loop simulation) system for an integrated navigation performance analysis of a large diameter unmanned underwater vehicle (LDUUV). The HILS system was used for the performance analysis of the LDUUV. When a conventional HILS system is used, it is not possible to calculate the velocity and position using an inertial navigation system (INS). To cope with this problem, an external acceleration was generated. To evaluate the proposed method, we compare the results of a Monte Carlo simulation and navigation HILS experiment.

Geophysical Navigation for UUV without External Telemetry Systems (지구 물리정보를 이용한 무인잠수정의 복합 항법 기술)

  • Jang, Junwoo;Cho, Hyunkuen;Kim, Jinwhan;Byun, Seung-Woo
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.1
    • /
    • pp.24-31
    • /
    • 2020
  • Alternative navigation in underwater environments is essential to prevent accumulating drift error of dead reckoning. In case of using an external positioning system, the installation and management process of the transmission station is cumbersome, and the operation range of underwater vehicle is limited. In order to solve this problem, navigation using geophysical information such as terrain, geomagnetic field and gravity can be used. Unlike the terrain, geomagnetic field and gravity are composed of 3-D information, so continuation process is required. In this paper, we present a integrated navigation algorithm using multiple geophysical information for long-term operation of UUV. The proposed algorithm is verified through numerical simulation in an artificially generated environments. As a result, integrated navigation showed higher navigation accuracy than single alternative navigation.

Development of the compact Integrated Flight Control Computer (소형 통합형 비행조종컴퓨터 개발)

  • Chang, SungHo;Koo, SamOk;Park, JuWon
    • Journal of Aerospace System Engineering
    • /
    • v.2 no.1
    • /
    • pp.17-21
    • /
    • 2008
  • A compact, light-weight, integrated flight control computer(IFCC) for small unmanned autonomous vehicles is developed. Its design objective is to produce an all in one avionics system which includes the navigation sensor, data link, attitude sensors and air data sensors. The initial phase of ground and flight tests are performed to verify the prototype IFCC, showing promising results. The high potential of its application is expected.

  • PDF

Design and Implementation of Integrated Marine Data Networking and Communication System for Training-Research Ship (실습조사선의 종합정보통신망시스템 구축)

  • KIM JAE-DONG;PARK SOO-HAN;KIM HYUNG-JIN;KOH SUNG-WI;JEONG HAE-JONG
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.24-29
    • /
    • 2004
  • A small, highly-trained crew working on the ship's automation has contributed to the improvement of operation efficiency and the labor environment on board ship. However, at the same time, having a small crew adds more responsibility to the ship's officers to safely operate and manage the ship. Recently, development on the system to concentrate important information being scattered at the various pieces of navigational equipment has been actively studied, using information and computer technology. The purpose of this study is to set up and implement an integrated marine data networking and communication system on the training-research ship. Information relating to navigation, engine and office automation were investigated and analyzed, and implementation methods associated with navigation, engine and the management information system were designed and presented. In addition, the networking system and navigational signal interface unit for the integrated communication system, and the data communication method between the ship and land are also discussed.

  • PDF

An Implementation of an Intelligent Digital Ship (지능형 디지털 선박의 구현방안)

  • Lim, Yong-Kon;Park, Jong-Won
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.5
    • /
    • pp.554-561
    • /
    • 2008
  • This paper deals with an intelligent digital ship which aims at development to support economic and safe services through an integration into the hierarchically layered digital signals such as ship's navigation, maneuvering and control signal and establishing a one-man bridge system in order to provide a support systems between ship and land station. This paper introduces the results of the mid-term project sponsored from Ministry of Commerce, Industry and Energy which consists of three sub-project such as INS(Intelligent Navigation System), AIS(Automatic Identification System), and IMIT (Integrated Maritime Information Technology). The INS system that can allow ships to navigate economically and safely through the integration and analysis of national data within the ship. AIS is a system that reports automatically on the location of the ship in order to prevent the collision between ships and between the ship and the land. IMIT is a integrated system for providing an efficient and economic support system between ships and the land and a ship-land platform and technologies.

A Study on Design and Implementation of Integrated Marine Data Networking and Communication System for Training-Research Ship (실습조사선의 종합정보통신망시스템 구축에 관한 연구)

  • KIM JAE-DONG;PARK SOO-HAN;KIM HYUNG-JIN;KOH SUNG-WI;JEONG HAE-JONG
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.6 s.61
    • /
    • pp.44-50
    • /
    • 2004
  • A small, highly-trained crew working on the ship's automation has contributed to the improvement of operations and the labor environment on board ship. However, at the same time, having a small crew adds more responsibility to the ship's officers to safely operate and manage the ship. With the use of information and computer technology, efforts are being made towards the development of a system that will concentrate important information from the various pieces of navigational equipment. The purpose of this study is to set up and implement an integrated marine data networking and communication system on the training-research ship. Information relating to navigation, engine and office automation are investigated and analyzed, and implementation methods associated with navigation, engine and management information system were designed and presented. In addition, the networking system of the navigational signal interface unit for the integrated communication system, and the data communication method between the ship and land are also discussed.

The method for the development of digital-ship (디지털 선박의 구현방안)

  • 박종원;임용곤;전동욱;배진호
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.10a
    • /
    • pp.745-748
    • /
    • 2001
  • Digital-ship is the next-generation ship with an one-man bridge system which consists of INS(Intelligent Navigation System), AIS(Automatic Identification System), and IMIT(Integrated Maritime Information Technology). INS implements the functions is related of the ship's navigation, and supports in the digital GIS environments optimal route planning, stranding and a collision avoidance among the ship, an economic navigation, and an integrated control of ship's engine. AIS prevents the ship's collision by means of transmitting periodically the own ship's information to the other ship or the shore control center. IMIT systems supports the integrated fiat-form in ships, the communication between a ship and a control center of the land using the INMARSAT, OrbComm, Ocean Observation Satellite, and etc. The satellite communication in ships can monitor the ship at an earth control renter. This paper deals with the method for system implementation of digital-ship and the detailed sub-system.

  • PDF

Improvement of a Low Cost MEMS Inertial-GPS Integrated System Using Wavelet Denoising Techniques

  • Kang, Chang-Ho;Kim, Sun-Young;Park, Chan-Gook
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.4
    • /
    • pp.371-378
    • /
    • 2011
  • In this paper, the wavelet denoising techniques using thresholding method are applied to the low cost micro electromechanical system (MEMS)-global positioning system(GPS) integrated system. This was done to improve the navigation performance. The low cost MEMS signals can be distorted with conventional pre-filtering method such as low-pass filtering method. However, wavelet denoising techniques using thresholding method do not distort the rapidly-changing signals. They can reduce the signal noise. This paper verified the improvement of the navigation performance compared to the conventional pre-filtering by simulation and experiment.

eLoran Signal Strength and Atmospheric Noise Simulation over Korea

  • Rhee, Joon Hyo;Seo, Jiwon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.2 no.2
    • /
    • pp.101-108
    • /
    • 2013
  • GPS is the most widely-used Positioning, Navigation, and Timing (PNT) system. Since GPS is an important PNT infrastructure, the vulnerability of GPS to signal jamming has received significant attention. Especially, South Korea has experienced intentional high-power jamming from North Korea for the past three years, and thus realized the necessity of a complementary PNT system. South Korea recently decided to deploy a high-power terrestrial navigation system, eLoran, as a complementary PNT system. According to the plan, the initial operational capability of the Korean eLoran system is expected by 2016, and the full operational capability is expected by 2018. As a necessary research tool to support the Korean eLoran program, an eLoran performance simulation tool for Korea is under development. In this paper, the received signal strength, which is necessary to simulate eLoran performance, from the suggested Korean eLoran transmitters is simulated with the consideration of effective ground conductivities over Korea. Then, eLoran signal-to-noise ratios are also simulated based on atmospheric noise data over Korea. This basic simulation tool will be expanded to estimate the navigation performance (e.g., accuracy, integrity, continuity, and availability) of the Korean eLoran system.