• Title/Summary/Keyword: Integrated Mobility

Search Result 285, Processing Time 0.027 seconds

Control of Position of Neutral Line in Flexible Microelectronic System Under Bending Stress (굽힘응력을 받는 유연전자소자에서 중립축 위치의 제어)

  • Seo, Seung-Ho;Lee, Jae-Hak;Song, Jun-Yeob;Lee, Won-Jun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.2
    • /
    • pp.79-84
    • /
    • 2016
  • A flexible electronic device deformed by external force causes the failure of a semiconductor die. Even without failure, the repeated elastic deformation changes carrier mobility in the channel and increases resistivity in the interconnection, which causes malfunction of the integrated circuits. Therefore it is desirable that a semiconductor die be placed on a neutral line where the mechanical stress is zero. In the present study, we investigated the effects of design factors on the position of neutral line by finite element analysis (FEA), and expected the possible failure behavior in a flexible face-down packaging system assuming flip-chip bonding of a silicon die. The thickness and material of the flexible substrate and the thickness of a silicon die were considered as design factors. The thickness of a flexible substrate was the most important factor for controlling the position of the neutral line. A three-dimensional FEA result showed that the von Mises stress higher than yield stress would be applied to copper bumps between a silicon die and a flexible substrate. Finally, we suggested a designing strategy for reducing the stress of a silicon die and copper bumps of a flexible face-down packaging system.

Influence of immediate loading on the removal torque value of mini-screws (교정력의 즉시 부하가 미니스크류의 제거 회전력에 미치는 영향의 평가)

  • Sun, Seung-Bum;Kang, Yoon-Goo;Kim, Seung-Hun;Mo, Sung-Seo;Kook, Yoon-Ah
    • The korean journal of orthodontics
    • /
    • v.37 no.6
    • /
    • pp.400-406
    • /
    • 2007
  • The purpose of this experimental study was to evaluate the effect of immediate orthodontic loading on the stability at the bone-implant interface of titanium miniscrews in a rabbit model. Methods: Forty titanium miniscrews (1.6 mm diameter, 8 mm length) were inserted in the tibiae of 10 rabbits. Twenty test group miniscrews were subjected to continuous orthodontic forces of 200g immediately after implantation for a period of 6 weeks. The remaining 20 control group miniscrews were left unloaded for the same follow-up interval. Removal torque values were recorded using a digital torque gauge. An independent t-test was performed. Results: All the miniscrews were stable, and exhibited no mobility or displacement throughout the experimental period. Histologically, miniscrews were well-integrated into bone. No statistically significant differences in removal torque data were found between the loaded test and the unloaded control groups. Conclusions: These findings suggest that titanium miniscrews can be used as anchoring units for orthodontic tooth movement immediately after insertion.

Low Conversion Loss 94 GHz MHEMT MIMIC Resistive Mixer (낮은 변환손실 특성의 94 GHz MHEMT MIMIC Resistive 믹서)

  • An Dan;Lee Bok-Hyung;Lim Byeong-Ok;Lee Mun-Kyo;Oh Jung-Hun;Baek Yong-Hyun;Kim Sung-Chan;Park Jung-Dong;Shin Dong-Hoon;Park Hyung-Moo;Park Hyun-Chang;Kim Sam-Dong;Rhee Jin-Koo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.5 s.335
    • /
    • pp.61-68
    • /
    • 2005
  • In this paper, low conversion loss 94 GHz MIMIC resistive mixer was designed and fabricated. The $0.1{\mu}m$ InGaAs/InAlAs/GaAs Metamorphic HEMT, which is applicable to MIMIC's, was fabricated. The DC characteristics of MHEMT are 665 mA/mm of drain current density, 691 mS/mm of maximum transconductance. The current gain cut-off frequency(fT) is 189 GHz and the maximum oscillation frequency(fmax) is 334 GHz. A 94 GHz resistive mixer was fabricated using $0.1{\mu}m$ MHEMT MIMIC process. From the measurement, the conversion loss of the 94 GHz resistive mixer was 8.2 dB at an LO power of 10 dBm. P1 dB(1 dB compression point) of input and output were 9 dBm and 0 dBm, respectively. LO-RF isolations of resistive mixer was obtained 15.6 dB at 94.03 GHz. We obtained in this study a lower conversion loss compared to some other resistive mixers in W-band frequencies.

Clustered Tributaries-Deltas Architecture for Energy Efficient and Secure Wireless Sensor Network (무선 센서 네트워크에서 에너지 효율성과 보안성을 제공하기 위한 클러스터 기반의 Tributaries-Deltas)

  • Kim, Eun-Kyung;Seo, Jae-Won;Chae, Ki-Joon;Choi, Doo-Ho;Oh, Kyung-Hee
    • The KIPS Transactions:PartC
    • /
    • v.15C no.5
    • /
    • pp.329-342
    • /
    • 2008
  • The Sensor Networks have limitations in utilizing energies, developing energy-efficient routing protocol and secure routing protocol are important issues in Sensor Network. In the field of data management, Tributaries and Deltas(TD) which incorporates tree topology and multi-path topology effectively have been suggested to provide efficiency and robustness in data aggregation. And our research rendered hierarchical property to TD and proposed Clustering-based Tributaries-Deltas. Through this new structure, we integrated efficiency and robustness of TD structure and advantages of hierarchical Sensor Network. Clustering-based Tributaries-Deltas was proven to perform better than TD in two situations through our research. The first is when a Base Station (BS) notices received information as wrong and requests the network's sensing data retransmission and aggregation. And the second is when the BS is mobile agent with mobility. In addition, we proposed key establishment mechanism proper for the newly proposed structure which resulted in new Sensor Network structure with improved security and energy efficiency as well. We demonstrated that the new mechanism is more energy-efficient than previous one by analyzing consumed amount of energy, and realized the mechanism on TmoteSKY sensor board using TinyOS 2.0. Through this we proved that the new mechanism could be actually utilized in network design.

Health-related Quality of Life and Its Related Factors in Urban Elderly Women (일개 광역시 도시 여성노인의 건강관련 삶의 질과 이에 미치는 요인)

  • Na, Yoon Joo;Choi, Yeon Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.12
    • /
    • pp.7224-7230
    • /
    • 2014
  • This study attempted to identify the health-related quality of life and its related factors in urban elderly women. This study used the data of the 2011 Community Health Survey. The subjects of this study were 704 elderly women. Based on the literature review, this study examined variables with health-related quality of life and construct integrated conceptual framework of the study. For data analysis, SPSS 18.0 and LISREL 8.8. were used to calculate the percentage, mean, standard deviation, Spearman correlation, and path analysis parameter. The total mean EQ-5D index score was $0.81({\pm}0.20)$ and the major problems were pain/discomfort (62.5%) and mobility (53.9%) and normal activity (38.9%). The model showed a goodness of fit to the empirical data. Age, income, health promotion behavior, social support, physical health and mental health had significant direct effects on EQ-5D and age, income, health promotion behavior and social support had indirect effects on EQ-5D. These variables explained 28% of the variance of EQ-5D. To improve the quality of life in urban elderly women, it is essential to have a comprehensive program for elderly women.

Influence of Co-sputtered HfO2-Si Gate Dielectric in IZO-based thin Film Transistors (HfO2-Si의 조성비에 따른 HfSiOx의 IZO 기반 산화물 반도체에 대한 연구)

  • Cho, Dong Kyu;Yi, Moonsuk
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.2
    • /
    • pp.98-103
    • /
    • 2013
  • In this work, we investigated the enhanced performance of IZO-based TFTs with $HfSiO_x$ gate insulators. Four types of $HfSiO_x$ gate insulators using different diposition powers were deposited by co-sputtering $HfO_2$ and Si target. To simplify the processing sequences, all of the layers composing of TFTs were deposited by rf-magnetron sputtering method using patterned shadow-masks without any intentional heating of substrate and subsequent thermal annealing. The four different $HfSiO_x$ structural properties were investigated x-ray diffraction(XRD), atomic force microscopy(AFM) and also analyzed the electrical characteristics. There were some noticeable differences depending on the composition of the $HfO_2$ and Si combination. The TFT based on $HfSiO_x$ gate insulator with $HfO_2$(100W)-Si(100W) showed the best results with a field effect mobility of 2.0[$cm^2/V{\cdot}s$], a threshold voltage of -0.5[V], an on/off ratio of 5.89E+05 and RMS of 0.26[nm]. This show that the composition of the $HfO_2$ and Si is an important factor in an $HfSiO_x$ insulator. In addition, the effective bonding of $HfO_2$ and Si reduced the defects in the insulator bulk and also improved the interface quality between the channel and the gate insulator.

Effect of Titanium Addition on Indium Zinc Oxide Thin Film Transistors by RF-magnetron Sputtering (RF-magnetron sputtering을 이용한 TiIZO 기반의 산화물 반도체에 대한 연구)

  • Woo, Sanghyun;Lim, Yooseong;Yi, Moonsuk
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.7
    • /
    • pp.115-121
    • /
    • 2013
  • We fabricated thin film transistors (TFTs) using TiInZnO(TiIZO) thin films as active channel layer. The thin films of TiIZO were deposited at room temperature by RF-magnetron co-sputtering system from InZnO(IZO) and Ti targets. We examined the effects of titanium addition by X-ray diffraction, X-ray photoelectron spectroscopy and the electrical characteristics of the TFTs. The TiIZO TFTs were investigated according to the radio-frequency power applied to the Ti target. We found that the transistor on-off currents were greatly influenced by the composition of titanium addition, which suppressed the formation of oxygen vacancies, because of the stronger oxidation tendency of Ti relative to that of Zn or In. A optimized TiIZO TFT with rf power 40W of Ti target showed good performance with an on/off current ratio greater than $10^5$, a field-effect mobility of 2.09 [$cm^2/V{\cdot}s$], a threshold voltage of 2.2 [V] and a subthreshold swing of 0.492 [V/dec.].

A Location Management Scheme Using Gateway in PCN (PCN에서 VLR 게이트웨이를 이용한 위치관리 기법)

  • 박남식;유영철;남궁한;진성일
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.8B
    • /
    • pp.1444-1455
    • /
    • 1999
  • In the standard location strategy such as IS-41 and GSM, Home Location Register(HLR) and Visitor Location Register(VLR) databases are used to manage the location of mobile terminals. The primary goal that location management schemes investigate is to reduce the cost of database access and the traffic for signaling network. When mobile terminals move frequently, one of problems in the standard location management scheme is that HLR database is highly updated and the traffic in signaling network can be occurred significantly due to high message transfer rate between HRL and VLR. As a solution to these problems, this paper proposes the location management scheme using VLR Gateway(VG) to reduce the both traffics of HLR update and signaling network which are resulted from location registration requirements of mobile terminals whenever they cross their registration area boundary. VG is a kind of database that is placed between HLR and VLR. It integrates one or more registration area defined in a system into one group and plays a role on behalf of HLR in a integrated registration scope so that the call delivery and the movement of mobile terminals are possible without HLR access in the scope. In order to evaluate performance of IS-41 and proposed scheme, we simulate two schemes based on wide range of call to mobility ratio. Its experiment result shows that in the proposed scheme total database cost increased slightly whereas HLR and signaling traffic decreased remarkably.

  • PDF

Characteristics of MHEMT Devices Having T-Shaped Gate Structure for W-Band MMIC (W-Band MMIC를 위한 T-형태 게이트 구조를 갖는 MHMET 소자 특성)

  • Lee, Jong-Min;Min, Byoung-Gue;Chang, Sung-Jae;Chang, Woo-Jin;Yoon, Hyung Sup;Jung, Hyun-Wook;Kim, Seong-Il;Kang, Dong Min;Kim, Wansik;Jung, Jooyong;Kim, Jongpil;Seo, Mihui;Kim, Sosu
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.2
    • /
    • pp.99-104
    • /
    • 2020
  • In this study, we fabricated a metamorphic high-electron-mobility transistor (mHEMT) device with a T-type gate structure for the implementation of W-band monolithic microwave integrated circuits (MMICs) and investigated its characteristics. To fabricate the mHEMT device, a recess process for etching of its Schottky layer was applied before gate metal deposition, and an e-beam lithography using a triple photoresist film for the T-gate structure was employed. We measured DC and RF characteristics of the fabricated device to verify the characteristics that can be used in W-band MMIC design. The mHEMT device exhibited DC characteristics such as a drain current density of 747 mA/mm, maximum transconductance of 1.354 S/mm, and pinch-off voltage of -0.42 V. Concerning the frequency characteristics, the device showed a cutoff frequency of 215 GHz and maximum oscillation frequency of 260 GHz, which provide sufficient performance for W-band MMIC design and fabrication. In addition, active and passive modeling was performed and its accuracy was evaluated by comparing the measured results. The developed mHEMT and device models could be used for the fabrication of W-band MMICs.

A Study on the Cobalt Electrodeposition of High Aspect Ratio Through-Silicon-Via (TSV) with Single Additive (단일 첨가제를 이용한 고종횡비 TSV의 코발트 전해증착에 관한 연구)

  • Kim, Yu-Jeong;Lee, Jin-Hyeon;Park, Gi-Mun;Yu, Bong-Yeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.140-140
    • /
    • 2018
  • The 3D interconnect technologies have been appeared, as the density of Integrated Circuit (IC) devices increases. Through Silicon Via (TSV) process is an important technology in the 3D interconnect technologies. And the process is used to form a vertically electrical connection through silicon dies. This TSV process has some advantages that short length of interconnection, high interconnection density, low electrical resistance, and low power consumption. Because of these advantages, TSVs could improve the device performance higher. The fabrication process of TSV has several steps such as TSV etching, insulator deposition, seed layer deposition, metallization, planarization, and assembly. Among them, TSV metallization (i.e. TSV filling) was core process in the fabrication process of TSV because TSV metallization determines the performance and reliability of the TSV interconnect. TSVs were commonly filled with metals by using the simple electrochemical deposition method. However, since the aspect ratio of TSVs was become a higher, it was easy to occur voids and copper filling of TSVs became more difficult. Using some additives like an accelerator, suppressor and leveler for the void-free filling of TSVs, deposition rate of bottom could be fast whereas deposition of side walls could be inhibited. The suppressor was adsorbed surface of via easily because of its higher molecular weight than the accelerator. However, for high aspect ratio TSV fillers, the growth of the top of via can be accelerated because the suppressor is replaced by an accelerator. The substitution of the accelerator and the suppressor caused the side wall growth and defect generation. The suppressor was used as Single additive electrodeposition of TSV to overcome the constraints. At the electrochemical deposition of high aspect ratio of TSVs, the suppressor as single additive could effectively suppress the growth of the top surface and the void-free bottom-up filling became possible. Generally, copper was used to fill TSVs since its low resistivity could reduce the RC delay of the interconnection. However, because of the large Coefficients of Thermal Expansion (CTE) mismatch between silicon and copper, stress was induced to the silicon around the TSVs at the annealing process. The Keep Out Zone (KOZ), the stressed area in the silicon, could affect carrier mobility and could cause degradation of the device performance. Cobalt can be used as an alternative material because the CTE of cobalt was lower than that of copper. Therefore, using cobalt could reduce KOZ and improve device performance. In this study, high-aspect ratio TSVs were filled with cobalt using the electrochemical deposition. And the filling performance was enhanced by using the suppressor as single additive. Electrochemical analysis explains the effect of suppressor in the cobalt filling bath and the effect of filling behavior at condition such as current type was investigated.

  • PDF