• Title/Summary/Keyword: Integrated Channel

Search Result 607, Processing Time 0.023 seconds

Reactor core analysis through the SP3-ACMFD approach Part II: Transient solution

  • Mirzaee, Morteza Khosravi;Zolfaghari, A.;Minuchehr, A.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.2
    • /
    • pp.230-237
    • /
    • 2020
  • In this part, an implicit time dependent solution is presented for the Boltzmann transport equation discretized by the analytic coarse mesh finite difference method (ACMFD) over the spatial domain as well as the simplified P3 (SP3) for the angular variable. In the first part of this work we proposed a SP3-ACMFD approach to solve the static eigenvalue equations which provide the initial conditions for temp dependent equations. Having solved the 3D multi-group SP3-ACMFD static equations, an implicit approach is resorted to ensure stability of time steps. An exponential behavior is assumed in transverse integrated equations to establish a relationship between flux moments and currents. Also, analytic integration is benefited for the time-dependent solution of precursor concentration equations. Finally, a multi-channel one-phase thermal hydraulic model is coupled to the proposed methodology. Transient equations are then solved at each step using the GMRES technique. To show the sufficiency of proposed transient SP3-ACMFD approximation for a full core analysis, a comparison is made using transport peers as the reference. To further demonstrate superiority, results are compared with a 3D multi-group transient diffusion solver developed as a byproduct of this work. Outcomes confirm that the idea can be considered as an economic interim approach which is superior to the diffusion approximation, and comparable with transport in results.

Polymer Waveguide Apodized Grating for Narrow-Bandwidth High-Reflectivity Wavelength Filters (협대역 고반사 파장 필터 구현을 위한 폴리머 광도파로 에포다이즈드 격자)

  • Lee, Won-Jun;Huang, Guanghao;Shin, Jin-Soo;Oh, Min-Cheol
    • Korean Journal of Optics and Photonics
    • /
    • v.26 no.4
    • /
    • pp.203-208
    • /
    • 2015
  • Wavelength filters are essential components for selecting a certain wavelength channel of a WDM optical communication system. To realize wavelength filters with narrow bandwidth and high reflectivity, an apodized grating structure with length of 15 mm and index modulation of $5{\times}10^{-4}$ was designed. The device exhibited a reflectivity of 95%, 3-dB bandwidth of 0.28 nm, and 20-dB bandwidth of 0.70 nm on an 18 mm grating length.

Device Adapter Model based on Dynamic Management Module for u-Health gateway (u-헬스 게이트웨이를 위한 동적 관리 모듈 기반의 디바이스 어댑터 모델)

  • Kim, Jong-Tak;Song, Si-Yun;Hwang, Hee-Jeong
    • Journal of Internet Computing and Services
    • /
    • v.11 no.2
    • /
    • pp.41-48
    • /
    • 2010
  • It is essential to guarantee a smooth communication and data exchange in a PHD(Personal Healthcare Device) network for applications providing U-health services. In spite of that, most of PHDs are heterogeneous, so the heterogeneity of their protocols makes it difficult to develop an integrated gateway sending sensed healthcare data to U-health service providers. To solve this problem, we suggest the design and implementation of a device adapter model based on dynamic managed module in this paper. Our model were implemented to work on the OSGi-based gateway middleware and to have interoperability in connection with the HL7 system that is the standard of the Healthcare Information systems. In addition, our model has an architecture supporting a communication based on the object serialization in order to provide extensibility in the functional aspect of applications. Through the experiment on a test-bed which is an implementation of the device adapter module for electrocardiogram and blood-pressure/blood-sugar device having one channel, we have confirmed the accuracy of sensing and sending data.

SnO2-Coated 3D Etched Cu Foam for Lithium-ion Battery Anode

  • Um, Ji Hyun;Kim, Hyunwoo;Cho, Yong-Hun;Yoon, Won-Sub
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.92-98
    • /
    • 2020
  • SnO2-based high-capacity anode materials are attractive candidate for the next-generation high-performance lithium-ion batteries since the theoretical capacity of SnO2 can be ideally extended from 781 to 1494 mAh g-1. Here 3D etched Cu foam is applied as a current collector for electron path and simultaneously a substrate for the SnO2 coating, for developing an integrated electrode structure. We fabricate the 3D etched Cu foam through an auto-catalytic electroless plating method, and then coat the SnO2 onto the self-supporting substrate through a simple sol-gel method. The catalytic dissolution of Cu metal makes secondary pores of both several micrometers and several tens of micrometers at the surface of Cu foam strut, besides main channel-like interconnected pores. Especially, the additional surface pores on etched Cu foam are intended for penetrating the individual strut of Cu foam, and thereby increasing the surface area for SnO2 coating by using even the internal of Cu foam. The increased areal capacity with high structural integrity upon cycling is demonstrated in the SnO2-coated 3D etched Cu foam. This study not only prepares the etched Cu foam using the spontaneous chemical reactions but also demonstrates the potential for electroless plating method about surface modification on various metal substrates.

Modeling of surface roughness in electro-discharge machining using artificial neural networks

  • Cavaleri, Liborio;Chatzarakis, George E.;Trapani, Fabio Di;Douvika, Maria G.;Roinos, Konstantinos;Vaxevanidis, Nikolaos M.;Asteris, Panagiotis G.
    • Advances in materials Research
    • /
    • v.6 no.2
    • /
    • pp.169-184
    • /
    • 2017
  • Electro-Discharge machining (EDM) is a thermal process comprising a complex metal removal mechanism. This method works by forming of a plasma channel between the tool and the workpiece electrodes leading to the melting and evaporation of the material to be removed. EDM is considered especially suitable for machining complex contours with high accuracy, as well as for materials that are not amenable to conventional removal methods. However, several phenomena can arise and adversely affect the surface integrity of EDMed workpieces. These have to be taken into account and studied in order to optimize the process. Recently, artificial neural networks (ANN) have emerged as a novel modeling technique that can provide reliable results and readily, be integrated into several technological areas. In this paper, we use an ANN, namely, the multi-layer perceptron and the back propagation network (BPNN) to predict the mean surface roughness of electro-discharge machined surfaces. The comparison of the derived results with experimental findings demonstrates the promising potential of using back propagation neural networks (BPNNs) for getting a reliable and robust approximation of the Surface Roughness of Electro-discharge Machined Components.

Development of Acoustic Emission Training Technique and Localization Method using Q-switched Laser and Multiple Sensors/Single Channel Acquisition (Q-switched 레이저와 다중센서/단일채널 신호수집을 이용한 복합재 구조 음향방출 트레이닝 및 위치탐지 기법 개발)

  • Choi, Yunshil;Lee, Jung-Ryul
    • Composites Research
    • /
    • v.31 no.4
    • /
    • pp.145-150
    • /
    • 2018
  • Various structural health monitoring (SHM) systems have been suggested for aerospace industry in order to increase its life-cycle and economic efficiency. In the case of aircraft structure madden with metal, a major concern was hot spots, such as notches, bolts holes, and where corrosion or stress concentration occurs due to moisture or salinity. However, with the increasing use of composites in the aerospace industry, further advanced SHM systems have been being required to be applied to composite structures, which have much complex damage mechanism. In this paper, a method of acoustic emission localization for composite structures using Q-switched laser and multiple Amplifier-integrated PZTs have been proposed. The presented technique aims at localization of the AE with an error in distance of less than 10 mm. Acoustic emission simulation and the localization attempt were conducted in the composite structure to validate the suggested method. Localization results, which are coordinates of detected regions, grid plots and color intensity map have been presented together to show reliability of the method.

Performance Evaluation of WUSB over WBAN Communication Structure for Wireless Wearable Computers (무선 웨어러블 컴퓨터를 위한 WUSB over WBAN 통신 구조의 성능 분석)

  • Hur, Kyeong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.4
    • /
    • pp.839-847
    • /
    • 2014
  • A recent major development in computer technology is the advent of the wearable computer system that is based on human-centric interface technology trends and ubiquitous computing environments. Wearable computer systems can use the wireless universal serial bus (WUSB) that refers to USB technology that is merged with WiMedia PHY/MAC technical specifications. In this paper, we focus on an integrated system of the wireless USB over the wireless body area networks (WBAN) for wireless wearable computer systems supporting U-health services. To construct the WUSB over WBAN communication systems, we propose a WBAN beaconing structure to assign WUSB communication periods. In the proposed structure, WUSB uses private periods of WBAN. In our performance evaluations, we compare theoretical results and simulation results about throughputs of WUSB under various WBAN channel occupations to evaluate the effectiveness of proposed structure in WUSB over WBAN communications.

Study on Production of Power Monitoring Unit for Electric Propulsion UAV (전기동력 무인항공기용 PMU의 개선 및 제작에 대한 연구)

  • Kang, Jin-Myeong;Jeong, Jin-Seok;Kang, Beom-Soo;Kim, Jang-Mok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.2
    • /
    • pp.140-147
    • /
    • 2017
  • This paper describes the design and implementation of previously developed PMU (Power Monitoring Unit) for LiPB (Lithium-ion Polymer Battery) that is electric propulsion used as unmanned aerial vehicle's power source. Improved PMU provides stable voltage and current to various sensors and elctric motors necessary during flight. Voltage and current monitoring function that is measured by improved PMU more precisely be enhanced and the monitoring channel and temperature sensor is added. To verify the improved performance of the equipment, it is integrated to electric propulsion system of unmanned aerial vehicle. PMU is calibrated through the ground test. And PMU's performance is checked through the flight test.

2D Numerical Simulations for Shallow-water Flows over a Side Weir (측면 위어를 넘나드는 천수 흐름에 대한 2차원 수치모의)

  • Hwang, Seung-Yong
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.11
    • /
    • pp.957-967
    • /
    • 2015
  • It was reviewed for the 2D numerical simulations to evaluate the effects of flood control by detention basin, even if stage-discharge relationships for the side weir were not known. A 2D depth-integrated numerical model was constructed by the application of the finite volume method to the shallow water equations as a numerical method and the introduction of an approximate Riemann solver for the accurate calculation of fluxes. Results by the model were compared with those by the laboratory test for the cases of free overflow and submerged flow over a side weir between the channel and storage. The difference between simulated and measured discharge coefficients for the case of free overflow is very small. In addition, the results by simulations were in good agreement with those by experiments for the submerged flow over a side weir and its mechanism was reproduced well. Through this study the discharge coefficients of side weirs can be accurately determined by the 2D numerical model and a considerable degree of accuracy can be achieved to evaluate the effect of flood defenses by detention basins. Thus, it will be expected to apply this model practically to the plan of detention basins, the evaluation of design alternatives, or the management of the existing ones.

Design and Fabrication of CMOS Micro Humidity Sensor System (CMOS 마이크로 습도센서 시스템의 설계 및 제작)

  • Lee, Ji-Gong;Lee, Sang-Hoon;Lee, Sung-Pil
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.9 no.2
    • /
    • pp.146-153
    • /
    • 2008
  • Integrated humidity sensor system with two stages operational amplifier has been designed and fabricated by $0.8{\mu}m$ analog mixed CMOS technology. The system (28 pin and $2mm{\times}4mm$) consisted of Wheatstone-bridge type humidity sensor, resistive type humidity sensor, temperature sensors and operational amplifier for signal amplification and process in one chip. The poly-nitride etch stop process has been tried to form the sensing area as well as trench in a standard CMOS process. This modified technique did not affect the CMOS devices in their essential characteristics and gave an allowance to fabricate the system on same chip by standard process. The operational amplifier showed the stable operation so that unity gain bandwidth was more than 5.46 MHz and slew rate was more than 10 V/uS, respectively. The drain current of n-channel humidity sensitive field effect transistor (HUSFET) increased from 0.54 mA to 0.68 mA as the relative humidity increased from 10 to 70 %RH.

  • PDF