DOI QR코드

DOI QR Code

SnO2-Coated 3D Etched Cu Foam for Lithium-ion Battery Anode

  • Um, Ji Hyun (Department of Energy Science, Sungkyunkwan University) ;
  • Kim, Hyunwoo (Department of Energy Science, Sungkyunkwan University) ;
  • Cho, Yong-Hun (Division of Energy Engineering, Kangwon National University) ;
  • Yoon, Won-Sub (Department of Energy Science, Sungkyunkwan University)
  • Received : 2019.08.06
  • Accepted : 2019.11.07
  • Published : 2020.02.28

Abstract

SnO2-based high-capacity anode materials are attractive candidate for the next-generation high-performance lithium-ion batteries since the theoretical capacity of SnO2 can be ideally extended from 781 to 1494 mAh g-1. Here 3D etched Cu foam is applied as a current collector for electron path and simultaneously a substrate for the SnO2 coating, for developing an integrated electrode structure. We fabricate the 3D etched Cu foam through an auto-catalytic electroless plating method, and then coat the SnO2 onto the self-supporting substrate through a simple sol-gel method. The catalytic dissolution of Cu metal makes secondary pores of both several micrometers and several tens of micrometers at the surface of Cu foam strut, besides main channel-like interconnected pores. Especially, the additional surface pores on etched Cu foam are intended for penetrating the individual strut of Cu foam, and thereby increasing the surface area for SnO2 coating by using even the internal of Cu foam. The increased areal capacity with high structural integrity upon cycling is demonstrated in the SnO2-coated 3D etched Cu foam. This study not only prepares the etched Cu foam using the spontaneous chemical reactions but also demonstrates the potential for electroless plating method about surface modification on various metal substrates.

Keywords

References

  1. J.-M. Tarascon and M. Armand, Nature, 2001, 414, 359-367. https://doi.org/10.1038/35104644
  2. J.S. Chen and X.W. Lou, Small, 2013, 9(11), 1877-1893. https://doi.org/10.1002/smll.201202601
  3. S.-H. Yu, S.H. Lee, D.J. Lee, Y.-E. Sung and T. Hyeon, Small, 2016, 12(16), 2146-2172. https://doi.org/10.1002/smll.201502299
  4. L.E. Downie, L.J. Krause, J.C. Burns, L.D. Jensen, V.L. Chevrier and J.R. Dahn, J. Electrochem. Soc., 2013, 160(4), A588-A594. https://doi.org/10.1149/2.049304jes
  5. I.A. Courtney and J.R. Dahn, J. Electrochem. Soc., 1997, 144(6), 2045-2052. https://doi.org/10.1149/1.1837740
  6. H. Kim, G.O. Park, Y. Kim, S. Muhammad, J. Yoo, M. Balasubramanian, Y.-H. Cho, M.-G. Kim, B. Lee, K. Kang, H. Kim, J.M. Kim and W.-S. Yoon, Chem. Mater., 2014, 26(22), 6361-6370. https://doi.org/10.1021/cm5025603
  7. H. Zhang, X. Yu and P.V. Braun, Nat. Nanotechnol., 2011, 6(5), 277-281. https://doi.org/10.1038/nnano.2011.38
  8. H. Zhang and P.V. Braun, Nano Lett., 2012, 12(6), 2778-2783. https://doi.org/10.1021/nl204551m
  9. X. Li, A. Dhanabalan, L. Gu and C. Wang, Adv. Energy Mater., 2012, 2(2), 238-244. https://doi.org/10.1002/aenm.201100380
  10. J.H. Um, H. Park, Y.-H. Cho, M.P.B. Glazer, D.C. Dunand, H. Choe and Y.-E. Sung, RSC Adv., 2014, 4, 58059-58063. https://doi.org/10.1039/C4RA12297F
  11. J.H. Um, M. Choi, H. Park, Y.-H. Cho, D.C. Dunand, H. Choe and Y.-E. Sung, Sci. Rep., 2016, 6, 18626. https://doi.org/10.1038/srep18626
  12. Y. Fu, Z. Yang, X. Li, X. Wang, D. Liu, D. Hu, L. Qiao and D. He, J. Mater. Chem. A, 2013, 1(34), 10002-10007. https://doi.org/10.1039/c3ta11753g
  13. W. Ni, H.B. Wu, B. Wang, R. Xu and X.W. Lou, Small, 2012, 8(22), 3432-3437. https://doi.org/10.1002/smll.201201678
  14. N. Umirov, D.-H. Seo, K.-N. Jung, H.-Y. Kim and S.-S. Kim, J. Electrochem. Sci. Technol., 2019, 10, 82-88. https://doi.org/10.5229/JECST.2019.10.1.82
  15. X. Xu, X. Luo, H. Zhuang, W. Li and B. Zhang, Mater. Lett., 2003, 57(24-25), 3987-3991. https://doi.org/10.1016/S0167-577X(03)00252-0
  16. L. Shi, C. Fan, C. Sun, Z. Ren, X. Fu, G. Qian and Z. Wang, RSC Adv., 2015, 5(36), 28611-28618. https://doi.org/10.1039/C4RA16778C
  17. S. Liang, J. Zhou, A. Pan, X. Zhang, Y. Tang, X. Tan, T. Chen and R. Wu, J. Power Sources, 2013, 228, 178-184. https://doi.org/10.1016/j.jpowsour.2012.11.104
  18. Z. Jin, C. Liu, K. Qi and X. Cui, Sci. Rep., 2017, 7, 39695. https://doi.org/10.1038/srep39695
  19. C. Hou, X.-M. Shi, C.-X. Zhao, X.-Y. Lang, L.-L. Zhao, Z. Wen, Y.-F. Zhu, M. Zhao, J.-C. Li and Q. Jiang, J. Mater. Chem. A, 2014, 2(37), 15519-15526. https://doi.org/10.1039/C4TA02604G
  20. A.A. Dubale, A.G. Tamirat, H.-M. Chen, T.A. Berhe, C.- J. Pan, W.-N. Su and B.-J. Hwang, J. Mater. Chem. A, 2016, 4(6), 2205-2216. https://doi.org/10.1039/C5TA09464J
  21. X. Li, Y. Liu, S. Li, J. Huang, Y. Wu and D. Yu, Nanoscale Res. Lett., 2016, 11, 470-477. https://doi.org/10.1186/s11671-016-1685-1
  22. J.-M. Themlin, M. Chtaib, L. Henrard, P. Lambin, J. Darville and J.-M. Gilles, Phys. Rev. B, 1992, 46(4), 2460-2466. https://doi.org/10.1103/PhysRevB.46.2460
  23. D. Su, X. Xie, S. Dou and G. Wang, Sci. Rep., 2014, 4, 5753. https://doi.org/10.1038/srep05753
  24. Y. Chen, J. Li, G. Yue and X. Luo, Nano-micro Lett., 2017, 9, 32-42. https://doi.org/10.1007/s40820-017-0131-y
  25. N.R. Srinivasan, S. Mitra and R. Bandyopadhyaya, Phys. Chem. Chem. Phys., 2014, 16(14), 6630-6640. https://doi.org/10.1039/c3cp54492c
  26. J. Li, Y. Zhao, N. Wang and L. Guan, Chem. Commun., 2011, 47(18), 5238-5240. https://doi.org/10.1039/c1cc10542f
  27. Y. Yang, X. Ji, F. Lu, Q. Chen and C.E. Banks, Phys. Chem. Chem. Phys., 2013, 15(36), 15098-15105. https://doi.org/10.1039/c3cp52808a
  28. M. Madian, M. Klose, T. Jaumann, A. Gebert, S. Oswald, N. Ismail, A. Eychmuller, J. Eckert and L. Giebeler, J. Mater. Chem. A, 2016, 4(15), 5542-5552. https://doi.org/10.1039/C6TA00182C
  29. W. Zeng, F. Zheng, R. Li, Y. Zhan, Y. Li and J. Liu, Nanoscale, 2012, 4(8), 2760-2765. https://doi.org/10.1039/c2nr30089c
  30. W. Ren, C. Wang, L. Lu, D. Li, C. Cheng and J. Liu, J. Mater. Chem. A, 2013, 1(43), 13433-13438. https://doi.org/10.1039/c3ta11943b
  31. J.M. Haag, G. Pattanaik and M.F. Durstock, Adv. Mater., 2013, 25(23), 3238-3243. https://doi.org/10.1002/adma.201205079
  32. K. Kravchyk, L. Protesescu, M.I. Bodnarchuk, F. Krumeich, M. Yarema, M. Walter, C. Guntlin and M.V. Kovalenko, J. Am. Chem. Soc., 2013, 135(11), 4199-4202. https://doi.org/10.1021/ja312604r

Cited by

  1. Dual lithium storage of Pt electrode: alloying and reversible surface layer vol.9, pp.34, 2020, https://doi.org/10.1039/d1ta04379j