• Title/Summary/Keyword: Integral equation

Search Result 1,035, Processing Time 0.029 seconds

Boundary Integral Equation Method by Cubic Spline (Cubic Spline을 사용한 경계요소법)

  • 서승남
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.2 no.1
    • /
    • pp.11-17
    • /
    • 1990
  • Dirichlet boundary value problems originated from unsteady deep water wave propagation are transformed to Boundary Intergral Equation Methods by use of a free surface Green's function and the integral equations are discretized by a cubic spline element method. In order to enhance the stability of the numerical model based on the derived Fredholm integral equation of 1 st kind, the method by Hsiao and MacCamy (1973) is employed. The numerical model is tested against exact solutions for two cases and the model shows very good accuracy.

  • PDF

APPROXIMATION OF FIXED POINTS AND THE SOLUTION OF A NONLINEAR INTEGRAL EQUATION

  • Ali, Faeem;Ali, Javid;Rodriguez-Lopez, Rosana
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.5
    • /
    • pp.869-885
    • /
    • 2021
  • In this article, we define Picard's three-step iteration process for the approximation of fixed points of Zamfirescu operators in an arbitrary Banach space. We prove a convergence result for Zamfirescu operator using the proposed iteration process. Further, we prove that Picard's three-step iteration process is almost T-stable and converges faster than all the known and leading iteration processes. To support our results, we furnish an illustrative numerical example. Finally, we apply the proposed iteration process to approximate the solution of a mixed Volterra-Fredholm functional nonlinear integral equation.

A Study on the Analysis of Magnetic Field in Magnetic Deflection Yoke Based on the Oblate Spheroidal coordinates (Oblate Spheroidal 좌표계를 이용한 자기 편형요크내의 자장 해석에 관한 연구)

  • Seo, Jeong-Doo;Yoo, Hyeong-Seon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.3
    • /
    • pp.117-124
    • /
    • 1993
  • This paper presents the study on the magnetic field analysis of magnetid deflection yoke using integral equation method. An integral equation method is developed for the computer modeling of the magnetic fields produced by color CRT and T.V. deflection yoke. Deflection of electron beams using magnetic fields is applied in a variety of display instruments such as te.evision receivers, electron probe instruments, etc. The magnetic field is solved by dividing these into the finite elements in the whole domain : the saddle coil which deflects the electron heam horizontally, the toroidal coil which deflects it vertically, magnetic core which enhances the magnetid fields genterated by the both coils. Using oblate spheroidal coordinates, this paper has had an easier access to the shape of magnetic deflection yoke chasing the boundaries than other coordinates.

  • PDF

SOLUTION OF A NONLINEAR DELAY INTEGRAL EQUATION VIA A FASTER ITERATIVE METHOD

  • James Abah Ugboh;Joseph Oboyi;Mfon Okon Udo;Emem Okon Ekpenyong;Chukwuka Fernando Chikwe;Ojen Kumar Narain
    • Nonlinear Functional Analysis and Applications
    • /
    • v.29 no.1
    • /
    • pp.179-195
    • /
    • 2024
  • In this article, we study the Picard-Ishikawa iterative method for approximating the fixed point of generalized α-Reich-Suzuki nonexpanisive mappings. The weak and strong convergence theorems of the considered method are established with mild assumptions. Numerical example is provided to illustrate the computational efficiency of the studied method. We apply our results to the solution of a nonlinear delay integral equation. The results in this article are improvements of well-known results.

APPLICATION OF NEW CONTRACTIVE CONDITION IN INTEGRAL EQUATION

  • Amrish Handa;Dinesh Verma
    • The Pure and Applied Mathematics
    • /
    • v.31 no.1
    • /
    • pp.83-102
    • /
    • 2024
  • In this paper, first we establish a unique common fixed point theorem satisfying new contractive condition on partially ordered non-Archimedean fuzzy metric spaces and give an example to support our result. By using the result established in the first section of the manuscript, we formulate a unique common coupled fixed point theorem and also give an example to validate our result. In the end, we study the existence of solution of integral equation to verify our hypothesis. These results generalize, improve and fuzzify several well-known results in the existing literature.

π/2 Pulse Shaping via Inverse Scattering of Central Potentials

  • 이창재
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.2
    • /
    • pp.188-192
    • /
    • 1996
  • It is shown that the inversion of the undamped Bloch equation for an amplitude-modulated broadband π/2 pulse can be precisely treated as an inverse scattering problem for a Schrodinger equation on the positive semiaxis. The pulse envelope is closely related to the central potential and asymptotically the wave function takes the form of a regular solution of the radial Schrodinger equation for s-wave scattering. An integral equation, which allows the calculation of the pulse amplitude (the potential) from the phase shift of the asymptotic solution, is derived. An exact analytical inversion of the integral equation shows that the detuning-independent π/2 pulse amplitude is given by a delta function. The equation also provides a means to calculate numerically approximate π/2 pulses for broadband excitation.

Sequential operator-valued function space integral as an $L({L_p},{L_p'})$ theory

  • Ryu, K.S.
    • Journal of the Korean Mathematical Society
    • /
    • v.31 no.3
    • /
    • pp.375-391
    • /
    • 1994
  • In 1968k Cameron and Storvick introduced the analytic and the sequential operator-valued function space integral [2]. Since then, the theo교 of the analytic operator-valued function space integral has been investigated by many mathematicians - Cameron, Storvick, Johnson, Skoug, Lapidus, Chang and author etc. But there are not that many papers related to the theory of the sequential operator-valued function space integral. In this paper, we establish the existence of the sequential operator-valued function space integral as an operator from $L_p$ to $L_p'(1 and investigated the integral equation related to this integral.

  • PDF

ON RETARDED INTEGRAL INEQUALITIES OF BIHARI-TYPE

  • Choi, Sung Kyu;Choi, Taeyoung;Kim, Daejung;Koo, Namjip
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.22 no.1
    • /
    • pp.49-63
    • /
    • 2009
  • We obtain some retarded integral inequalities of Bihari-type and apply these results to a retarded differential equation of Bernoulli-type.

  • PDF