• Title/Summary/Keyword: Integral Approximation

Search Result 179, Processing Time 0.026 seconds

Localized particle boundary condition enforcements for the state-based peridynamics

  • Wu, C.T.;Ren, Bo
    • Coupled systems mechanics
    • /
    • v.4 no.1
    • /
    • pp.1-18
    • /
    • 2015
  • The state-based peridynamics is considered a nonlocal method in which the equations of motion utilize integral form as opposed to the partial differential equations in the classical continuum mechanics. As a result, the enforcement of boundary conditions in solid mechanics analyses cannot follow the standard way as in a classical continuum theory. In this paper, a new approach for the boundary condition enforcement in the state-based peridynamic formulation is presented. The new method is first formulated based on a convex kernel approximation to restore the Kronecker-delta property on the boundary in 1-D case. The convex kernel approximation is further localized near the boundary to meet the condition that recovers the correct boundary particle forces. The new formulation is extended to the two-dimensional problem and is shown to reserve the conservation of linear momentum and angular momentum. Three numerical benchmarks are provided to demonstrate the effectiveness and accuracy of the proposed approach.

A study on the Hankel approximation of input delay systems (입력 시간지연 시스템의 한켈 근사화에 관한 연구)

  • Hwang, Lee-Cheol;Ha, Hui-Gwon;Lee, Man-Hyeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.3
    • /
    • pp.308-314
    • /
    • 1998
  • This paper studies the problem of computing the Hankel singular values and vectors in the input delay systems. It is shown that the Hankel singular values are solutions to a transcendental equation and the Hankel singular vectors are obtained from the kernel of the matrix. The computation is carried out in state space framework. Finally, Hankel approximation of a simple example shows the usefulness of this study.

  • PDF

Localized particle boundary condition enforcements for the state-based peridynamics

  • Wu, C.T.;Ren, Bo
    • Interaction and multiscale mechanics
    • /
    • v.7 no.1
    • /
    • pp.525-542
    • /
    • 2014
  • The state-based peridynamics is considered a nonlocal method in which the equations of motion utilize integral form as opposed to the partial differential equations in the classical continuum mechanics. As a result, the enforcement of boundary conditions in solid mechanics analyses cannot follow the standard way as in a classical continuum theory. In this paper, a new approach for the boundary condition enforcement in the state-based peridynamic formulation is presented. The new method is first formulated based on a convex kernel approximation to restore the Kronecker-delta property on the boundary in 1-D case. The convex kernel approximation is further localized near the boundary to meet the condition that recovers the correct boundary particle forces. The new formulation is extended to the two-dimensional problem and is shown to reserve the conservation of linear momentum and angular momentum. Three numerical benchmarks are provided to demonstrate the effectiveness and accuracy of the proposed approach.

Analysis of Transient Scattering from Arbitrarily Shaped Three-Dimensional Conducting Objects Using Combined Field Integral Equation (결합 적분방정식을 이용한 삼차원 임의형태 도체 구조물의 전자파 지연산란 해석)

  • Jung, Baek-Ho
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.11
    • /
    • pp.551-558
    • /
    • 2002
  • A time-domain combined field integral equation (CFIE) is presented to obtain the transient scattering response from arbitrarily shaped three-dimensional conducting bodies. This formulation is based on a linear combination of the time-domain electric field integral equation (EFIE) with the magnetic field integral equation (MFIE). The time derivative of the magnetic vector potential in EFIE is approximated using a central finite difference approximation and the scalar potential is averaged over time. The time-domain CFIE approach produces results that are accurate and stable when solving for transient scattering responses from conducting objects. The incident spectrum of the field may contain frequency components, which correspond to the internal resonance of the structure. For the numerical solution, we consider both the explicit and implicit scheme and use two different kinds of Gaussian pulses, which may contain frequencies corresponding to the internal resonance. Numerical results for the EFIE, MFIE, and CFIE are presented and compared with those obtained from the inverse discrete Fourier transform (IDFT) of the frequency-domain CFIE solution.

Flapwise and non-local bending vibration of the rotating beams

  • Mohammadnejad, Mehrdad;Saffari, Hamed
    • Structural Engineering and Mechanics
    • /
    • v.72 no.2
    • /
    • pp.229-244
    • /
    • 2019
  • Weak form integral equations are developed to investigate the flapwise bending vibration of the rotating beams. Rayleigh and Eringen nonlocal elasticity theories are used to investigate the rotatory inertia and Size-dependency effects on the flapwise bending vibration of the rotating cantilever beams, respectively. Through repetitive integrations, the governing partial differential equations are converted into weak form integral equations. The novelty of the presented approach is the approximation of the mode shape function by a power series which converts the equations into solvable one. Substitution of the power series into weak form integral equations results in a system of linear algebraic equations. The natural frequencies are determined by calculation of the non-trivial solution for resulting system of equations. Accuracy of the proposed method is verified through several numerical examples, in which the influence of the geometry properties, rotatory inertia, rotational speed, taper ratio and size-dependency are investigated on the natural frequencies of the rotating beam. Application of the weak form integral equations has made the solution simpler and shorter in the mathematical process. Presented relations can be used to obtain a close-form solution for quick calculation of the first five natural frequencies of the beams with flapwise vibration and non-local effects. The analysis results are compared with those obtained from other available published references.

APPROXIMATION OF SOLUTIONS THROUGH THE FIBONACCI WAVELETS AND MEASURE OF NONCOMPACTNESS TO NONLINEAR VOLTERRA-FREDHOLM FRACTIONAL INTEGRAL EQUATIONS

  • Supriya Kumar Paul;Lakshmi Narayan Mishra
    • Korean Journal of Mathematics
    • /
    • v.32 no.1
    • /
    • pp.137-162
    • /
    • 2024
  • This paper consists of two significant aims. The first aim of this paper is to establish the criteria for the existence of solutions to nonlinear Volterra-Fredholm (V-F) fractional integral equations on [0, L], where 0 < L < ∞. The fractional integral is described here in the sense of the Katugampola fractional integral of order λ > 0 and with the parameter β > 0. The concepts of the fixed point theorem and the measure of noncompactness are used as the main tools to prove the existence of solutions. The second aim of this paper is to introduce a computational method to obtain approximate numerical solutions to the considered problem. This method is based on the Fibonacci wavelets with collocation technique. Besides, the results of the error analysis and discussions of the accuracy of the solutions are also presented. To the best knowledge of the authors, this is the first computational method for this generalized problem to obtain approximate solutions. Finally, two examples are discussed with the computational tables and convergence graphs to interpret the efficiency and applicability of the presented method.

A Controller Design of a Magnetic Levitation System (자기부상 시스템의 제어기 설계)

  • Ha, Y.W.
    • Journal of Power System Engineering
    • /
    • v.4 no.3
    • /
    • pp.62-71
    • /
    • 2000
  • A mathematical modeling for a magnetic levitation system is proposed using the Taylor series expansion of differential function for obtaining linearity. It is confirmed that this kind of linear approximation method can be used to the modeling of a magnetic levitation system. The two-degree-of-freedom optimal servo system for a constant reference signal is proposed using the LQ optimization technique. An additional state feedback is introduced at the output of the integrator to cancel the integral action for reference signal if there is no modeling error of the plant and no disturbance input to the plant. When the modeling error or the disturbance input exists, the integral effect appears. The system has a free parameter which can b used to tune the effect of the integral compensation.

  • PDF

NOTE ON CONVERGENCE OF EULER'S GAMMA FUNCTION

  • Choi, Junesang
    • Honam Mathematical Journal
    • /
    • v.35 no.1
    • /
    • pp.101-107
    • /
    • 2013
  • The Gamma function ${\Gamma}$ which was first introduced b Euler in 1730 has played a very important role in many branches of mathematics, especially, in the theory of special functions, and has been introduced in most of calculus textbooks. In this note, our major aim is to explain the convergence of the Euler's Gamma function expressed as an improper integral by using some elementary properties and a fundamental axiom holding on the set of real numbers $\mathbb{R}$, in a detailed and instructive manner. A brief history and origin of the Gamma function is also considered.

A numerical study of the performance of a turbomolecular pump (터보분자펌프의 성능해석에 관한 수치해석적 연구)

  • Hwang, Yeong-Gyu;Heo, Jung-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.11
    • /
    • pp.3620-3629
    • /
    • 1996
  • In the free molecular flow range, the pumping performance of a turbomolecular pump has been predicted by calculation of the transmission probability which employs the integral method and the test particle Monte-Carlo method. Also, new approximate method combining the double stage solutions, so called double-approximation, is presented here. The calculated values of transmission probability for the single stage agree quantitatively with the previous known numerical results. For a six-stage pump, the Monte-Carlo method is employed to calculate the overall transmission probability for the entire set of blade rows. When the results of the approximate method combining the single stage solutions are compared with those of the Monte-Carlo method at dimensionless blade velocity ratio C=0.4, the previous known approximate method overestimates as much as 34% than does the Monte-Carlo method. But, the new approximate method gives more accurate results, whose relative error is 10% compared to the Monte-Carlo method, than does the previous approximate method.