• Title/Summary/Keyword: Integral

Search Result 6,558, Processing Time 0.031 seconds

Effects of Habitat Disturbance on Fish Community Structure in a Gravel-Bed Stream, Korea (자갈하천에서 서식처 교란이 어류 군집구조에 미치는 영향)

  • Kim, Seog Hyun;Lee, Wan-Ok;Cho, Kang-Hyun
    • Ecology and Resilient Infrastructure
    • /
    • v.1 no.2
    • /
    • pp.49-60
    • /
    • 2014
  • Fish assemblages play an integral role in stream ecosystem and are influenced by stream environmental conditions and habitat disturbances. Fish community structures and habitat parameters of U.S. EPA rapid bio-assessment protocol were surveyed to investigate the effect of stream environment and habitat disturbance on fish communities at 13 study sites in the Gapyeong Stream, a typical gravel-bed stream. Principal component analysis (PCA) based on data from habitat assessment at each study site indicated that the study sites were differentiated by habitat parameters such as embeddedness, velocity/depth regime and sediment deposition, which were related with bed slope. A total of 46 species belonging to 12 families were collected in the Gapyeong Stream. A dominant species was Zacco koreanus, subdominant species was Z. platypus. Hierarchical cluster analysis based on species abundance classified fish communities into the three main groups along the stream longitudinal change. Non-metric multidimensional scaling (NMDS) portrayed that fish community structures were related to major habitat parameters, i.e., epifaunal substrate/available cover, embeddedness, velocity/depth regime, sediment deposition, channel alternation and frequency of riffles. These results suggested that fish community structures were primary affected by the longitudinal environmental changes, and those were modified by habitat disturbance in the Gapyeong Stream, a gravel-bed stream.

Dynamics of the River Plume (하천수 플룸 퍼짐의 동력학적 연구)

  • Yu, Hong-Sun;Lee, Jun;Shin, Jang-Ryong
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.6 no.4
    • /
    • pp.413-420
    • /
    • 1994
  • Dynamics of the river plume is a very complicated non-linear problem with the free boundary changing in time and space. Mixing with the ambient water through the boundary makes the problem more complicated. In this paper we reduced 3-dimensional problem into 1-dimensional one by using the integral analysis method. Basic equations have been integrated over the lateral and vertical variations. For these integrations we adopted the well-established assumption that the flow-axis component of plume velocity and the density difference of the plume with the ambient water have Gaussian distributions in directions which are perpendicular to the flow-axis of the plume. We also used the result of our previous study on the lateral spreading velocity of the plume derived under the same assumption. And entrainment was included as a mixing process. The resultant 1-dimensional equations were solved by Runge-Kutta numerical method. Consequently, comparatively easy method of numerical analysis is presented for the 3-dimensional river plume. The method can also be used for the analysis of the thermal plume of cooling water of power plants.

  • PDF

A research study on the relationship of work environments to occupational diseases in dental hygienists (치과위생사의 근무환경과 직업병의 연관성에 대한 조사연구)

  • Nam, Young-Shin;Jang, Jae-Yeon
    • Journal of Korean society of Dental Hygiene
    • /
    • v.11 no.4
    • /
    • pp.581-593
    • /
    • 2011
  • Objectives : The purpose of this study was to examine the relationship of the work environments of dental hygienists to their occupational diseases in a bid to provide some information on their health care, health promotion and the prevention of occupational diseases. Methods : The subjects in this study were 300 dental hygienists who worked in Seoul, urban communities involving large cities and rural areas. One-on-one interviews and a self-administered survey were implemented with their consent. Results : The findings of the study were as follows: 1. 60 percent of the dental hygienists investigated replied that they had occupation-related physical symptoms. By the length of service, the dental hygienists who worked for six to 10 years had the most symptoms. 2. Out of the occupation-related symptoms, the most prevalent symptom was a pain in the shoulders and neck(41%), followed by a pain in the lower back, a pain in the legs, a pain in the wrists and skin diseases. The most painful parts of the body were hands and arms. 3. In regard to the relationship between the general characteristics and the intensity of pain, the highest group of the dental hygienists in Seoul replied that they had a severe pain, and the lowest number of those in the large cities gave the same answer. 4. Concerning the cause of occupational diseases, 65.7 percent cited the wrong posture. 5. As to relationship between the general characteristics and regular hospital-visit experiences for the prevention of pain during work hours, many of the dental hygienists who were in their 40s and 50s visited hospitals from time to time, and many of those in their 20s never did that. 6. In regard to links between the general characteristics and an opinion on the necessity of regular education, many of the respondents from Seoul and urban regions involving large cities considered it necessary to receive education on a regular basis. By daily work hours, the highest number of those who worked for eight hours or less considered that necessary, and lots of those who worked for 11 hours didn't consent to that. The gaps between them were statistically significant(p<0.05). Conclusions : Given the findings of the study, daily work hours and length of service were two integral factors to affect the regular hospital-visit experiences and pain, and the wrong posture was identified as the most common cause of occupational diseases. To ensure the successful prevention of occupational diseases, dental hygiene students should be taught the importance of occupational disease before they start to work, and supplementary education should be provided for dental hygienists to work in the right posture.

A Study on the Government's R&D Budgeting Evaluation System in Korea (과학기술혁신체제 하에서의 국가연구개발 평가 시스템 개선에 관한 연구 : 연구개발 예산평가 시스템을 중심으로)

  • Bark, Pyeng-Mu;Lee, Ki-Jong
    • Journal of Korea Technology Innovation Society
    • /
    • v.12 no.4
    • /
    • pp.819-839
    • /
    • 2009
  • Proposed increases to the government's R&D budget should be discussed based on merits of meeting efficiency and effectiveness criteria. The evaluation of the national R&D budget and related programs are performed in two areas: a system of R&D budget coordination and allocation, and a system of R&D program performance. This paper mainly focuses on the operational areas of R&D budget evaluation system with a focus on their impact to efficiency and effectiveness. The core view point for a R&D budget evaluation system involves two directions: Firstly, to detail the relationships between the later stage (ex. post) activities such as, program survey, analysis, and program performance evaluation, with the budget evaluation. Secondly, to critically oversee all R&D coordination procedures with a different perspective. Budgeting is generally known as a serial process of policy making, planning and executing. It is highly desirable for the budget to be allocated to, and spent by, specific programs as planned, and that each plan be aligned with a specific policy. As such, a strong relevance between the program structure and budget code system is integral to successful execution. It should be performed using a decision making system which closely examines the link between policy and budget. It is also recommended that systematic relationships be maintained among budget coordination and allocation, performance evaluations of policy and program levels, and program survey and analysis system, and that their operational schedule should be reviewed comprehensively as a one integrated system. The National Science and Technology Council is expected to play a major and practical role as the center of policy planning and should be supported by the objective and unbiased system which covers overall process from policy making to program evaluation. Finally, increased utilization of contents, timely program survey and analysis, and accurate of activity scheduling of budget coordination and allocation, and diligent program performance evaluation all contribute towards a more efficient and effective overall evaluation system.

  • PDF

A Study on the Aesthetic Characteristics of the Digital Rotoscoping Images in Jonas Odell's Animations (요나스 오델(Jonas Odell)의 작품 세계에 나타난 디지털 로토스코핑 이미지의 특성)

  • Kim, Young-Ok
    • Cartoon and Animation Studies
    • /
    • s.39
    • /
    • pp.111-132
    • /
    • 2015
  • Although Rotoscoping technique has been used for a long time to mimic the natural and smooth motion since the early 20th century, its artistic value was devalued as tricks because it traces the already recorded images. But the fact that the rotoscoping images can cross the boundaries between animation and live action in an infinite integral freedom in the digital era became rather expansive new aesthetic possibilities of representation of the reality. In addition, Jonas Odell's animations such as (2010), (2008), (2006) are good example to prove that the rotoscoping images also can serve as means to enhance its narrative. This study is to analyze how rotoscoping images act as a unique role in relation with the narrative based on the said person's real stories and realistic images. I argue that his animated films constantly contain these three characteristics -Images to mediate Auditory sensitivity as a record of inner metaphysical reality, anonymous images to represent a specific existential character, and images that act as physical representation that holds the physical space/time and related memory. This reveals that rotoscoping images in this digital era went beyond reproduction for natural movements or special type of style. It rather suggests new layers of experience, and acquires new value in animation. I hope that this study could serve as a foundation to rediscover and re-position the value of rotoscoping images as well as good opportunity to introduce very talented swedish animation artist who already received global attention with his unique philosophical and aesthetic style.

Fracture and Hygrothermal Effects in Composite Materials (복합재의 파괴와 hygrothermal 효과에 관한 연구)

  • Kook-Chan Ahn;Nam-Kyung Kim
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.4
    • /
    • pp.143-150
    • /
    • 1996
  • This is an explicit-Implicit, finite element analysis for linear as well as nonlinear hygrothermal stress problems. Additional features, such as moisture diffusion equation, crack element and virtual crack extension(VCE ) method for evaluating J-integral are implemented in this program. The Linear Elastic Fracture Mechanics(LEFM) Theory is employed to estimate the crack driving force under the transient condition for and existing crack. Pores in materials are assumed to be saturated with moisture in the liquid form at the room temperature, which may vaporize as the temperature increases. The vaporization effects on the crack driving force are also studied. The Ideal gas equation is employed to estimate the thermodynamic pressure due to vaporization at each time step after solving basic nodal values. A set of field equations governing the time dependent response of porous media are derived from balance laws based on the mixture theory Darcy's law Is assumed for the fluid flow through the porous media. Perzyna's viscoplastic model incorporating the Von-Mises yield criterion are implemented. The Green-Naghdi stress rate is used for the invariant of stress tensor under superposed rigid body motion. Isotropic elements are used for the spatial discretization and an iterative scheme based on the full newton-Raphson method is used for solving the nonlinear governing equations.

  • PDF

On the Evaluation of Physical Distribution Service in Ports (항만물류서비스의 평가에 관하여)

    • Journal of Korean Port Research
    • /
    • v.10 no.2
    • /
    • pp.17-29
    • /
    • 1996
  • It is required to consider pricing and non-pricing factors and external economy in order to achieve the objects of physical distribution system in a port. Recently, among the three factors, much attention has been paid to non-pricing factor in the system. Although physical distribution service in a port(PDSP)has been frequently mentioned in documents and literature related to port and shipping studies, few study on it has not been systematically and scientifically made due to the following problems; $\circ$ there are not proper criteria to evaluate level and quality of PDSP and as a result it is difficult to set up a unified standard for doing so. $\circ$ algorithms to evaluate problems with complex and ambiguous attributes and multiple levels in PDSP are not available. This thesis aims to establish a paradigm to evaluate PDSP and to abvance existing decision making methods to deal with complex and ambiguous problems in PDSP. To tackle the first purpose, extensive and thorough literature survey was carried out on general physical distribution service, which is a corner stone to handle PDSp. In addition, through interviews and questionnaire to the expert, it have extracted 82 factors of physical distribution service in a port. They have been classified into 6 groups by KJ method and each group defined by the expert's advice as follows; a. Potentiality b. Exactness c. safety d. Speediness e. Convenience f. Linkage Prior to the service evaluation, many kinds of its attributes must be identified on the basis of rational decision owing to complexity and ambiguity inherent in PDSP. An analytical hierarchy process (AHP) is a method to evaluate them but it is not applicable to PDSP that have property of non-additivity and overlapped attributes. Therefore, probablility measure can not be used to evaluate PDSP but fuzzy measure is required. Hierarchical fuzzy integral method, which is merged AHP with fuzzy measure, is also not effective method to evaluate attributes because it has vary complicated way to calculate fuzzy measure identification coefficient of attributes. A new evaluation algorithm has been introduced to solve problems with multi-attribute and multi-level hierarchy, which is called hierarchy fuzzy process(HFP).Analysis on ambiguous aspects of PDSP under study which is not easy to be defined is prerequisite to evaluate it. HFP is different from algorithm existed in that it clarified the relationship between fuzzy measure and probability measure adopted in AHP and that it directly calculates the family of fuzzy measure from overlapping coefficient and probability measure to treat and evaluate ambiguous and complex aspects of PDSP. A new evaluation algorithm HFP was applied to evaluate level of physical distribution service in the biggest twenty container port in the world. The ranks of the ports are as follows; 1. Rotterdam Port, 2. Hamburg Port, 3. Singapore Port, 4. Seattle Port, 5. Yokohama Port, 6. Long beach Port, 7. Oakland Port, 8. Tokyo Port, 9. Hongkong Port, 10. Kobe Port, 11. Los Angeles Port, 12. New york Port, 13. Antwerp Port, 14. Felixstowe Port, 15. Bremerhaven Port, 16. Le'Havre Port, 17. Kaoshung Port, 18. Killung Port, 19. Bangkok Port, 20. Pusan Port

  • PDF

Speed Control of Marine Gas Turbine Engine using Nonlinear PID Controller (비선형 PID 제어기를 이용한 선박용 가스터빈 엔진의 속도 제어)

  • Lee, Yun-Hyung;So, Myung-Ok
    • Journal of Navigation and Port Research
    • /
    • v.39 no.6
    • /
    • pp.457-463
    • /
    • 2015
  • A gas turbine engine plays an important role as a prime mover that is used in the marine transportation field as well as the space/aviation and power plant fields. However, it has a complicated structure and there is a time delay element in the combustion process. Therefore, an elaborate mathematical model needs to be developed to control a gas turbine engine. In this study, a modeling technique for a gas generator, a PLA actuator, and a metering valve, which are major components of a gas turbine engine, is explained. In addition, sub-models are obtained at several operating points in a steady state based on the trial running data of a gas turbine engine, and a method for controlling the engine speed is proposed by designing an NPID controller for each sub-model. The proposed NPID controller uses three kinds of gains that are implemented with a nonlinear function. The parameters of the NPID controller are tuned using real-coded genetic algorithms in terms of minimizing the objective function. The validity of the proposed method is examined by applying to a gas turbine engine and by conducting a simulation.

Reliability Assessment Based on an Improved Response Surface Method (개선된 응답면기법에 의한 신뢰성 평가)

  • Cho, Tae Jun;Kim, Lee Hyeon;Cho, Hyo Nam
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.1
    • /
    • pp.21-31
    • /
    • 2008
  • response surface method (RSM) is widely used to evaluate th e extremely smal probability of ocurence or toanalyze the reliability of very complicated structures. Althoug h Monte-Carlo Simulation (MCS) technique can evaluate any system, the procesing time of MCS dependson the reciprocal num ber of the probability of failure. The stochastic finite element method could solve thislimitation. However, it is limit ed to the specific program, in which the mean and coeficient o f random variables are programed by a perturbation or by a weigh ted integral method. Therefore, it is not aplicable when erequisite programing. In a few number of stage analyses, RSM can construct a regresion model from the response of the c omplicated structural system, thus, saving time and efort significantly. However, the acuracy of RSM depends on the dist ance of the axial points and on the linearity of the limit stat e functions. To improve the convergence in exact solution regardl es of the linearity limit of state functions, an improved adaptive response surface method is developed. The analyzed res ults have ben verified using linear and quadratic forms of response surface functions in two examples. As a result, the be st combination of the improved RSM techniques is determined and programed in a numerical code. The developed linear adapti ve weighted response surface method (LAW-RSM) shows the closest converged reliability indices, compared with quadratic form or non-adaptive or non-weighted RSMs.

Modeling and analysis of selected organization for economic cooperation and development PKL-3 station blackout experiments using TRACE

  • Mukin, Roman;Clifford, Ivor;Zerkak, Omar;Ferroukhi, Hakim
    • Nuclear Engineering and Technology
    • /
    • v.50 no.3
    • /
    • pp.356-367
    • /
    • 2018
  • A series of tests dedicated to station blackout (SBO) accident scenarios have been recently performed at the $Prim{\ddot{a}}rkreislauf-Versuchsanlage$ (primary coolant loop test facility; PKL) facility in the framework of the OECD/NEA PKL-3 project. These investigations address current safety issues related to beyond design basis accident transients with significant core heat up. This work presents a detailed analysis using the best estimate thermal-hydraulic code TRACE (v5.0 Patch4) of different SBO scenarios conducted at the PKL facility; failures of high- and low-pressure safety injection systems together with steam generator (SG) feedwater supply are considered, thus calling for adequate accident management actions and timely implementation of alternative emergency cooling procedures to prevent core meltdown. The presented analysis evaluates the capability of the applied TRACE model of the PKL facility to correctly capture the sequences of events in the different SBO scenarios, namely the SBO tests H2.1, H2.2 run 1 and H2.2 run 2, including symmetric or asymmetric secondary side depressurization, primary side depressurization, accumulator (ACC) injection in the cold legs and secondary side feeding with mobile pump and/or primary side emergency core coolant injection from the fuel pool cooling pump. This study is focused specifically on the prediction of the core exit temperature, which drives the execution of the most relevant accident management actions. This work presents, in particular, the key improvements made to the TRACE model that helped to improve the code predictions, including the modeling of dynamical heat losses, the nodalization of SGs' heat exchanger tubes and the ACCs. Another relevant aspect of this work is to evaluate how well the model simulations of the three different scenarios qualitatively and quantitatively capture the trends and results exhibited by the actual experiments. For instance, how the number of SGs considered for secondary side depressurization affects the heat transfer from primary side; how the discharge capacity of the pressurizer relief valve affects the dynamics of the transient; how ACC initial pressure and nitrogen release affect the grace time between ACC injection and subsequent core heat up; and how well the alternative feeding modes of the secondary and/or primary side with mobile injection pumps affect core quenching and ensure stable long-term core cooling under controlled boiling conditions.