Reliability Assessment Based on an Improved Response Surface Method

개선된 응답면기법에 의한 신뢰성 평가

  • Received : 2007.11.12
  • Accepted : 2008.01.02
  • Published : 2008.02.20

Abstract

response surface method (RSM) is widely used to evaluate th e extremely smal probability of ocurence or toanalyze the reliability of very complicated structures. Althoug h Monte-Carlo Simulation (MCS) technique can evaluate any system, the procesing time of MCS dependson the reciprocal num ber of the probability of failure. The stochastic finite element method could solve thislimitation. However, it is limit ed to the specific program, in which the mean and coeficient o f random variables are programed by a perturbation or by a weigh ted integral method. Therefore, it is not aplicable when erequisite programing. In a few number of stage analyses, RSM can construct a regresion model from the response of the c omplicated structural system, thus, saving time and efort significantly. However, the acuracy of RSM depends on the dist ance of the axial points and on the linearity of the limit stat e functions. To improve the convergence in exact solution regardl es of the linearity limit of state functions, an improved adaptive response surface method is developed. The analyzed res ults have ben verified using linear and quadratic forms of response surface functions in two examples. As a result, the be st combination of the improved RSM techniques is determined and programed in a numerical code. The developed linear adapti ve weighted response surface method (LAW-RSM) shows the closest converged reliability indices, compared with quadratic form or non-adaptive or non-weighted RSMs.

응답면기법(RSM, Response surface method)은 복잡한 구조물의 매우 작은 발생확률이나 신뢰성해 석에서 폭넓게 사용된다. MCS(Monte-Carlo Simulation)방법은 어떤 시스템의 평가에서도 사용될 수 있으나 해석시간이 파괴확률의 역수에 비례하게 되어 발생확률이 매우 희박한 시스템의 평가에 불리하다. 확률유한요소해석법은 이러한 MCS의 한계점을 해결해 줄 수 있는 대안이 될 수 있다. 그러나 이 방법은 평균과 표준편차 등이 모델링 (내부 프로그래밍)된 특별한 프로그램에서만 적용 가능하며 임의의 범용소프트웨어의 응답을 모델링하거나 임의의 프로그램의 특성을 이용할 수가 없다. RSM방법은 복잡한 구조시스템에서 응답에 대한 회귀모델을 구성하여 효율적인 해석단계를 통해 시간과 노력을 획기적으로 절감시킬 수 있다. 그러나 RSM의 정확도는 한계상태방정식의 선형성과 축점간의 거리에 영향을 받게 된다. 이런 단점을 해결하기 위해 한계상태방정식의 선형성과 무관하게 정확한 수렴해를 구하기 위한 개선된 적응적 응답면기법을 개발하고 선형과 2차형식의 응답면방정식에 대한 2가지 예를 들어 검증하였다. 검증결과 가장 효율적인 RSM기법을 결정하였다. 개발된 선형적응적가중응답 면기법 (linear adaptive weighted response surface method, LAW-RSM)은 비적응적이거나 비가중형식의 2차 RSM기법에 비해서 정해의 신뢰성지수에 가장 근접한 정확성과 수렴성을 나타낸다.

Keywords

References

  1. 한국콘크리트학회(2003), 콘크리트구조설계기준, pp. 80-82
  2. G. Fishman(1995), Monte Carlo : Concepts, Algorithms, and Applications, Springer-Verlag
  3. Jian Cheng, Marek J. Druzdzel(2000), An Adaptive Importance Sampling Algorithm for Evidential Reasoning in Large Bayesian Networks, Journal of Artificial Intelligence Research 13, pp. 155-188 https://doi.org/10.1613/jair.764
  4. William G. Cochran(1977), Sampling Techniques (3rd Ed), John Wiley & Sons
  5. Minasny, B. and McBratney, A. B. (2006). A conditioned Latin hypercube method for sampling in the presence of ancillary information. Computers & Geoscienc,e 32(9): 1378-1388 https://doi.org/10.1016/j.cageo.2005.12.009
  6. Novak, D. and Lehky, D.(2006), inverse analysis based on stochastic small sample training set simulation, Engineering Applications of Artificial Intelligence, 19(7): 731-740 https://doi.org/10.1016/j.engappai.2006.05.003
  7. Torvi H. and Terje H.(1998), Methods for evaluating uncertainties in dynamic simulation - A comparison of performance, Computers & Chemical Engineering, 22(1): S985-S988 https://doi.org/10.1016/S0098-1354(98)00196-3
  8. Jeffrey S. Rosenthal(1996), Markov chain convergence: From finite to infinite, Stochastic Processes and their Applications 62, 55-72 https://doi.org/10.1016/0304-4149(95)00082-8
  9. Andrieu C. , P.M. DjuricH, A. Doucet(2001), Model selection by MCMC computation, Signal Processing 81, 19-37 https://doi.org/10.1016/S0165-1684(00)00188-2
  10. Davy Janssens, Geert Wets, Tom Brijs, Koen Vanhoof(2005), The development of an adapted Markov chain modelling heuristic and simulation framework in the context of transportation research, Expert Systems with Applications, 28(1): 105-117 https://doi.org/10.1016/j.eswa.2004.08.004
  11. Box, G.E.P., and Wilson, K.B(1951). On the experimental attainment of optimum conditions, Journal of Royal Statistical Society, Series B13: 1-45
  12. Bucher CG, Bourgund U(1990), A fast and efficient response surface approach for structural reliability problems. Structural Safety, 7(1): 57-66 https://doi.org/10.1016/0167-4730(90)90012-E
  13. Rajaschekhar MR, ELlingwood BR(1993), A new look at the reponse surface approach for reliability analysis. Structural Safety, 12:205-20 https://doi.org/10.1016/0167-4730(93)90003-J
  14. Guan XL. Melchers R E(2001), Effect of response surface parameters variation on structural reliability estimates, Structural Safety, 23: 429-444 https://doi.org/10.1016/S0167-4730(02)00013-9
  15. Engelund S. and R. Rackwitz(1993), A benchmark study on importance sampling techniques in structural reliability, Structural Safety, 12(4): 255-276 https://doi.org/10.1016/0167-4730(93)90056-7
  16. Cho T(2007), Prediction of Cyclic Freeze-Thaw Damage in Concrete Structures Based upon Response Surface Method, Construction and Building Materials, 21(12): 2031-2040 https://doi.org/10.1016/j.conbuildmat.2007.04.018
  17. Nowak .A.S., Cho T(2007), Prediction of the Combination of Failure Modes for an Arch Bridge System, Journal of Constructional Steel Research, 63(12): 1561-1569 https://doi.org/10.1016/j.jcsr.2007.05.004
  18. Lee, Sang Hoon , Kwak, Byung Man (2006), Response surface augmented moment method for efficient reliability analysis, Structural Safety, 28 261-272 https://doi.org/10.1016/j.strusafe.2005.08.003
  19. Kim S, Na S(1997). Response surface method using vector projected sampling points. Structural Safety, 19(1):3-19 https://doi.org/10.1016/S0167-4730(96)00037-9
  20. Rackwitz R. and Fiessler B(1978), Structural reliability under combined random load sequences, Computers and Structures: 9:489-94 https://doi.org/10.1016/0045-7949(78)90046-9
  21. Irfan Kaymaza, Chris A. McMahonb(2005), A response surface method based on weighted regression for structural reliability analysis, Probabilistic Engineering Mechanics 20, 11-17 https://doi.org/10.1016/j.probengmech.2004.05.005
  22. X. L. Guan and R. E. Melchers (2000), A parametric study on the reponse surface method, 8th ASCE Specialty Conference on Probabilistic Mechanics and Structural Reliability, PMC 2000-023