• Title/Summary/Keyword: Intake swirl flow

Search Result 106, Processing Time 0.024 seconds

Effect of Inlet Valve Angle on In-Cylinder Swirl Generation Characteristics(I) (흡입밸브 각이 실린더 내 와류 발생 특성에 미치는 영향(I))

  • Ohm, In-Yong;Park, Chan-Jun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.6
    • /
    • pp.148-156
    • /
    • 2008
  • This paper is the first of 2 companion papers which investigate in-cylinder swirl generation characteristics according to inlet valve angle. Two DOHC 4 valve engines, one has wide intake valve angle and the other has narrow valve angle, were used to compare the characteristics of swirl motion generation in the cylinder. One intake port was deactivated to induce swirl flow. A PIV (Particle Image Velocimetry) was applied to measure in-cylinder velocity field according to inlet valve angle during intake stroke. The results show that the stronger swirl motion is observed in wide valve angle engine at the early intake stage; however, the swirl motion is gradually distorted by the intake flow component passing through valve area near the cylinder wall as the stroke proceeds. The tumble motion also does so in wide angle. On the contrary, the swirl and tumble motions, which are not clear at the initial stage, become better and better arranged as the piston goes down and up again after bottom dead center.

In -Cylinder Flow Characteristics Varying Intake Valve Lift (밸브 리프트 변화에 따른 실린더 내 흡입 공기의 유동 특성)

  • 윤정의
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.9
    • /
    • pp.82-88
    • /
    • 1999
  • The object of this study is to find new evaluation index for in-cylinder flow chracteristics istead of current swirl, tumble coefficient using steady flow test rig on intake port system. To this end, port flow system. To this end, port flow rig test was conducted on DOHC head varying intake valve lift respectively. Finally combination angular coefficient and inclination angle were introduced as new evaluation index for in-cylinder angularflow characteristics instead of swirl and tumble coefficient.

  • PDF

A Study on the Characteristics of Intake Port Flow and Performance with Swirl Ratio Variance in a Turbocharged D.I. Diesel Engine (과급 디젤엔진에서 선회비 변경에 따른 흡기 포트유동 및 엔진성능 특성에 관한 연구)

  • Yoon, Jun-Kyu;Cha, Kyung-Ok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.9
    • /
    • pp.1185-1194
    • /
    • 2000
  • The characteristics of intake port flow and engine performance with swirl ratio variance in a turbocharged D.I. diesel engine were studied in this paper. The intake port flow is important factor which have influence on the engine performance and exhaust emission because the properties in the injected fuel depend on the combustion characteristics. Through these experiments it can be expected to satisfy performance and emission by optimizing the main parameters; the swirl ratio of intake port, injection timing and compression ratio. The swirl ratio for ports was modified by hand-working and measured by impulse swirl meter. For the effects on performance and emission, the brake torque and brake specific fuel consumption were measured by engine dynamometer, NOx and smoke were measured by gas analyzer and smoke meter. The results of steady flow test are as follows; as the valve eccentricity ratio are closed to cylinder wall, the flow coefficient and swirl intensity are increased. Also we realized that there is a trade-off that the increase of swirl ratio decreases mean flow coefficient and increases the Gulf factor. And the optimum parameters to meet performance and emission through engine test are as follows; the swirl ratio 2.43, injection timing BTDC 13oCA and compression ratio 15.5.

Investigation of In-Cylinder Flow Patterns in 4 Valve S. I. Engine by Using Single-Frame Particle Tracking Velocimetry

  • Lee, Ki-hyung;Lee, Chang-sik;Chon, Mun-soo
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.108-116
    • /
    • 2001
  • The in-cylinder flow field of gasoline engine comprises unsteady compressible turbulent flows caused by the intake port, combustion chamber geometry. Thus, the quantitative analysis of the in-cylinder flow characteristics plays an important role in the improvement of engine performances and the reduction of exhaust emission. In order to obtain the quantitative analysis of the in-cylinder gas flows for a gasoline engine, the single-frame particle tracking velocimetry was developed, which is designed to measure 2-dimensional gas flow field. In this paper, influences of the swirl and tumble intensifying valves on the in-cylinder flow characteristics under the various intake flow conditions were investigated by using this PTV method. Based on the results of experiment, the generation process of swirl and tumble flow in a cylinder during intake stroke was clarified. Its effect on the tumble ratio at the end of compression stroke was also investigated.

  • PDF

A Study on the Steady Flow of Intake Port in Single Cylinder Engine Head (단기통 엔진 헤드에서 흡기포트의 정상유동에 관한 연구)

  • Kim, Dae-Yeol;Choi, Soo-Kwang
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.4
    • /
    • pp.13-21
    • /
    • 2007
  • This paper presents characteristics of steady flow by variation of a combustion chamber and an intake port. Gas flow field inside a combustion chamber is the important factor in improving combustion stability and reduction of emission level. The flow characteristics such as flow coefficient, tumble ratio and swirl ratio are measured by the steady flow rig test with an impulse meter in this study. In the measuring, the valve lifts are varied between 1mm to 10mm. The three combustion chambers and two intake ports were applied to the steady flow apparatus in order to investigate the effect of swirl and tumble on the in-cylinder flow. As a result, tumble ratio were found to be different by variation of the combustion chambers and the intake ports. The data from the present study can be applied to design of a similar engine as basic data.

Effects of Tumble Adaptor Configurations on the Intake Tumble Characterization (텀블-스월 변환장치 형상이 흡입텀블 특성화에 미치는 영향)

  • Kang, K.Y.;Lee, J.W.;Baek, J.H.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.5
    • /
    • pp.66-73
    • /
    • 1994
  • The configuration effects of a tumble adaptor which transforms tumble into swirl on the intake tumble characterization under steady flow condition have been investigated by LDV measurement The following parameters were involved to test their effects on tumble-swirl conversion characteristics ; the cylinder height and its bottom shape, measuring position in the swirl induction pipe, and the relative direction of the induction pipe. The short cylinder height and the flat bottom of the tumble adaptor were found effective for the generation of tumble in the cylinder, allowing higher tumble-swirl conversion efficiency.

  • PDF

A study on the Characteristics of In-Cylinder Intake Flow in Spark Ignition Engine Using the PIV

  • Lee Suk-Young;Jeong Ku-Seob;Jeon Chung-Hwan;Chang Young-June
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.704-715
    • /
    • 2005
  • In this study, to investigate in-cylinder tumble or swirl intake flow of a gasoline engine, the flow characteristics were examined with opening control valve (OCV) and several swirl control valves (SCV) which intensify intake flow through steady flow experiment, and also turbulent characteristics of in-cylinder flow field were investigated by 2-frame cross-correlation particle image velocimetry (PIV) method. In the investigation of intake turbulent characteristics using PIV method, the different flow characteristics were showed according to OCV or SCV figures. The OCV or SCV installed engine had higher vorticity and turbulent kinetic energy than a baseline engine, especially around the wall and lower part of the cylinder. Above all, SCV B type was superior to the others. About energy dissipation and reynolds shear stress distribution, a baseline engine had larger loss than OCV or SCV installed one because flow impinged on the cylinder wall. It should be concluded, from what has been said above, as swirl component was added to existing tumble flow adequately, it was confirmed that turbulent intensity was enlarged, flow energy was conserved effectively through the experiment. In other words, there is a suggestion that flow characteristics as these affected to in-cylinder combustion positively.

Analysis of Swirl Flow and Combustion Characteristics by Variable Valve's Operation of Cam-In-Cam System based on GT-Power Program (GT-Power기반 Cam-In-Cam 가변밸브작동에 따른 스월유동 및 연소특성 해석)

  • Lee, Y.M.;Jo, I.S.;Kim, J.H.;Park, S.W.;Lee, J.W.
    • Journal of ILASS-Korea
    • /
    • v.23 no.2
    • /
    • pp.58-65
    • /
    • 2018
  • An analytic strategy to control the variable valve actuation applied to two intake valves (flow port intake valve and swirl port intake valve) was performed in this study. we considered the variation in phasing of intake valve profiles by using the Cam-in-Cam technology. The analytic model was implemented in the GT-Power simulation program and analyzed the result of regulated emissions such as, NOx and Soot, especially with IMEP characteristics. Namely, we meticulously investigated the sources of having effect on the amount of NOx and soot formation under the test conditions with retard timing of both flow port and swirl port intake valves for decreasing the opening duration by 35CAD. Also, we analyzed the effect of incylinder pressure and temperature with NOx variations and in-cylinder pressure and temperature on NOx variations and normalized turbulent intensity. Through this analysis, some useful results on the combustion and flow characteristics of the swirl port and flow port control of the intake valve were obtained by this study.

A Study on Combined Effects between Swirl and Tumble Flow of Intake Port System in Cylinder Head (엔진 흡입포트 시스템 유동특성 규명을 위한 스월-텀블 합성효과에 관한 연구)

  • 윤정의
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.8
    • /
    • pp.76-82
    • /
    • 1999
  • The object of this study is to find new evalution index for in-cylinder flow characteristics insteady of current swirl, tumble coefficient using steady flow test rig on intake port system. To this end, port flow rig test was conducted on DOHC head varying intake valve lift respectively. Finally combination angular coefficient and inclination angle were introduced as new evaluation index for in-cylinder angular flow characteristics.

  • PDF

LARGE EDDY SIMULATIONS OF TUMBLE AND SWIRL FORMATIONS IN ENGINE IN-CYLINDER FLOW

  • Lee, B.S.;Lee, J.S.
    • International Journal of Automotive Technology
    • /
    • v.7 no.4
    • /
    • pp.415-422
    • /
    • 2006
  • Swirl and tumble flows in an engine in-cylinder have been simulated by using a three-dimensional computational fluid dynamics code, and the results are validated in comparison with experimental data. The large eddy simulation based on the Smagorinsky model and the fractional step method is adopted to describe the turbulence of in-cylinder flows and to save computing time, respectively. The main purpose of this study is connected with the effect of various conditions of intake flows on formation and development of in-cylinder tumble and swirl motions. The engine speeds considered are 1000 rpm and 3000 rpm for intake flows with inclination angles between $-10^{\circ}$ and $20^{\circ}$ at deflection angles of $0^{\circ}$, $22.5^{\circ}$, and $30^{\circ}$. The results are discussed by visualizing flow fields and by evaluating parameters in relation to vortex intensity such as swirl and tumble ratios.