• Title/Summary/Keyword: Insulation testing

Search Result 150, Processing Time 0.024 seconds

Developing a Multi-Functional Smart Down Jacket Utilizing Solar Light and Evaluating the Thermal Properties of the Prototype (태양광을 활용한 스마트 다운재킷 개발 및 보온성능 평가)

  • Yi, Kyonghwa;Kim, Keumwha
    • Journal of Fashion Business
    • /
    • v.19 no.4
    • /
    • pp.92-108
    • /
    • 2015
  • This study aimed at developing a down jacket prototype that utilized sunlight as an alternative energy source with no air pollution. The jacket is filled with flexible solar panels and has a heat-generating function and LED function. In this study, three smart down jacket prototypes were developed, and the jacket's capabilities were demonstrated through the thermal effect on the performance test. The typical output voltage of the flexible solar panels was 6.4V. By connecting the 2 solar cell modules in series, the final output voltage was 12.8V. A battery charge regulator module was used the KA 7809 (TO-220) of 9V. Three heating pads were to be inserted into the belly of the jacket as direct thermal heating elements, and the LED module was configured, separated by a flash and an indicator. The smart down jacket was designed to prevent damage to the down pack without the individual devices' interfering with the human body's motion. Because this study provides insulation from extreme cold with a purpose, the jacket was tested for heat insulation properties of non-heating, heating on the back, heating on the abdomen, and heating on both the back and abdomen in a sitting posture in a static state. Thermal property analysis results from examining the average skin temperature, core temperature, and the temperature and humidity within clothing showed, that placing a heating element in one place was more effective than distributing the heating elements in different locations. Heating on the back was the most effective for maintaining optimal skin temperature, core temperature, and humidity, whereas heating on the abdomen was not effective for maintaining optimal skin temperature, core temperature, or humidity within clothing because of the gap between the jacket and the body.

Effects of surface-roughness and -oxidation of REBCO conductor on turn-to-turn contact resistance

  • Y.S., Chae;H.M., Kim;Y.S., Yoon;T.W., Kim;J.H., Kim;S.H., Lee
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.4
    • /
    • pp.40-45
    • /
    • 2022
  • The electrical/thermal stabilities and magnetic field controllability of a no-insulation (NI) high-temperature superconducting magnet are characterized by contact resistance between turn-to-turn layers, and the contact resistance characteristics are determined by properties of conductor surface and winding tension. In order to accurately predict the electromagnetic characteristics of the NI coil in a design stage, it is necessary to control the contact resistance characteristics within the design target parameters. In this paper, the contact resistance and critical current characteristics of a rare-earth barium copper oxide (REBCO) conductor were measured to analyze the effects of surface treatment conditions (roughness and oxidation level) of the copper stabilizer layer in REBCO conductor. The test samples with different surface roughness and oxidation levels were fabricated and conductor surface analysis was performed using scanning electron microscope, alpha step surface profiler and energy dispersive X-ray spectroscopy. Moreover, the contact resistance and critical current characteristics of the samples were measured using the four-terminal method in a liquid nitrogen impregnated cooling environment. Compared with as-received REBCO conductor sample, the contact resistance values of the REBCO conductors, which were post-treated by the scratch and oxidation of the surface of the copper stabilizer layer, tended to increase, and the critical current values were decreased under certain roughness and oxidation conditions.

A Study on the Standard Test Method for Thermal Resistance of Military Textile Thermal Insulator for Winter Season (방한을 목적으로 하는 군용 섬유제품 충전재의 보온성 시험방법에 대한 표준화 연구)

  • Yeo, Yong-heon;Hong, Seong-don;Lee, Min-hee;Kim, Kyung-pil;Chung, Il-han
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.9
    • /
    • pp.492-500
    • /
    • 2018
  • The performance evaluation of cold weather clothing is mainly carried out with thermal resistance. However, the results of the revised test method regarding the same specimen were decreased compare to previous one. In addition, there were deviations of the results among the authorized testing institutes according to the different interpretation of the KS test method. This makes it a considerable difficulty to the quality assurance of combat supplies. The purpose of this study is to minimize the variation of the results before and after the revision by analyzing the cause of the decrease in the heat insulation rate according to the revised test method. For this purpose, the difference between the test conditions before and after the revision of KS is analyzed and the possible results are reviewed. In addition, we want to minimize the result deviation between testing laboratories by analyzing the cause of the result deviation between test laboratories according to arbitrary interpretation of the standard. Based on this, we propose a standardized test method to prevent the decrease of the heat insulation rate by checking the pre-revision test method and the condition with the least deviation.

Fire Risk Rating Evaluation of Organic Insulation Materials (유기 단열재의 화재위험성 등급 평가)

  • You, Ji Sun;Jeon, Nam;Chung, Yeong-jin
    • Applied Chemistry for Engineering
    • /
    • v.32 no.4
    • /
    • pp.417-422
    • /
    • 2021
  • In this study, poly isocyanurate foam (PIR), poly urethane foam (PUR), and phenol foam (PF) of organic insulation materials were selected, and investigated using a cone calorimeter, as per ISO 5660-1. Standard materials (PMMA) were used to standardize the fire hazard assessment, and the fire risk was classified and evaluated by Chung's equations-III and IV. The fire performance index-II value of Chung's equations-II was the highest value with PF of 14.77 s2/kW. And the PUR was 0.08 s2/kW, the lowest value of fire performance index-II value. The fire growth index-II value was the lowest value with PF of 0.01 kW/s2. And the PUR was 1.14 kW/s2, the highest value of fire growth index-II value. The fire performance index-III (FPI-III) of Chung's equations-III had the lowest value for PUR (0.11) and the highest for PF (20.23). The PUR showed the highest value of the fire growth index-III (FGI-III) as 14.25, while the PF exhibited 0.13 regarded as the safest materials. The fire risk index-IV (FRI-IV) value of Chung's equation-IV was in the following order: PUR (130.03) >> PIR (19.13) > PMMA (1.00) > PF (0.01). Therefore, it was concluded that the fire risk associated with PF is the lowest, whereas that associated with PUR is the highest.

Development of Real-Time Thickness Measuring System for Insulated Pipeline Using Gamma-ray (감마선을 이용한 단열배관의 실시간 두께측정시스템 개발)

  • Jang, Ji-Hoon;Kim, Byung-Joo;Kim, Gi-Dong;Cho, Kyung-Shik
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.5
    • /
    • pp.500-507
    • /
    • 2002
  • By this study, on-line real-time radiometric system was developed using a 64 channels linear array of solid state detectors to measure wall thickness of insulated piping system. This system uses an Ir-192 as a gamma ray source and detector is composed of BGO scintillator and photodiode. Ir-192 gamma ray source and linear detector array mounted on a computer controlled robotic crawler. The Ir-192 gamma ray source is located on one side of the piping components and the detector array on the other side. The individual detectors of the detector array measure the intensity of the gamma rays after passing through the walls and the insulation of the piping component under measurement. The output of the detector array is amplified by amplifier and transmitted to the computer through cable. This system collects and analyses the data from the detector array in real-time as the crawler travels over the piping system. The maximum measurable length of pipe is 120cm/min. in the case of 1mm scanning interval.

Features Extraction and Mechanism Analysis of Partial Discharge Development under Protrusion Defect

  • Dong, Yu-Lin;Tang, Ju;Zeng, Fu-Ping;Liu, Min
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.344-354
    • /
    • 2015
  • In order to study the development of partial discharge (PD) under typical protrusion defects in gas-insulated switchgear, we applied step voltages on the defect and obtained the ${\varphi}-u$ and ${\varphi}-n$ spectrograms of ultra-high frequency (UHF) PD signals in various PD stages. Furthermore, we extracted seven kinds of features to characterize the degree of deterioration of insulation and analyzed their values, variation trends, and change rates. These characteristics were inconsistent with the development of PD. Hence, the differences of these features could describe the severity of PD. In addition, these characteristics could provide integrated characteristics regarding PD development and improve the reliability of PD severity assessment because these characteristics were extracted from different angles. To explain the variation laws of these seven kinds of parameters, we analyzed the relevant physical mechanism by considering the microphysical process of PD formation and development as well as the distortion effect generated by the space charges on the initial field. The relevant physical mechanism effectively allocated PD severity among these features for assessment, and the effectiveness and reliability of using these features to assess PD severity were proved by testing a large number of PD samples.

Insulation Characteristics and Thermography Diagnosis of Porcelain Insulators for the Distribution Systems (배전용 자기재 현수애자의 절연특성과 열화상 진단)

  • Joung, Jong-Man;Kim, Dong-Myeong;Choi, Myung-Ho
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.60 no.4
    • /
    • pp.267-271
    • /
    • 2011
  • The insulating characteristics and temperature rise behaviors of porcelain suspension insulators were investigated. The testing insulators had used in the distribution systems normally and were sampled. Firstly, leakage current was measured and its impedance was calculated. The leakage current of good insulators is 0.2 mA and its impedance is 66 $M{\Omega}$. The worse insulators have lower impedance and the insulators having below 15 $M{\Omega}$ take place flashover at the high frequency voltage flashover test. Secondly, the temperature rise characteristics were analyzed depending on leakage current and its impedance. Surface temperature of insulators was measured for 30 minutes and until its saturation after voltage was applied. The temperature rise of insulators having 15 $M{\Omega}$ is about $14.5^{\circ}C$ above the ambient temperature. Lastly, the heating behaviors of 3 insulators in a string was analyzed. Any insulator in the string does not generate heat so far as it has at least one sound insulator. On the other hand, all the insulators in the string are bad if the string have any heating insulator.

A Novel Noise Reduction Method for Measuring Partial Discharge in High Voltage Electric Machinery (고압 전기설비 부분방전시험을 위한 노이즈 저감방안)

  • Lee, Young-Jun;Park, Kwang-Ha;Choi, Hyung-Joo
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.2021_2022
    • /
    • 2009
  • Partial discharges(PD) is a important factor to evaluate the insulation state in high voltage electric machinery. However, measuring PD under the circumstances of power plant is occasionally impossible due to the relatively high magnitude of noise which is emanated from the operating machinery. In some case, the instrument measuring PD can not even perform a calibration that initializes tools and enhance the accuracy. This paper presents that we devised a noise reduction method and demonstrated the usefulness in acquiring reliable PD signals. We attached a series of filter and transformer at the input of power source of the instruments which refrains high noise signals from incoming to the instruments. We experimented the efficiency of noise reduction applying the device into the Dangjin Power Plant and Factory. As a result of testing with the filter and transformer, we can easily calibrate the PD signal compared to the case without the device. Additionally, we can detect the small PD signal which was unperceived with a normal device.

  • PDF

Experimental bond behavior of hybrid rods for concrete reinforcement

  • Nanni, Antonio;Nenninger, Jeremy S.;Ash, Kenneth D.;Liu, Judy
    • Structural Engineering and Mechanics
    • /
    • v.5 no.4
    • /
    • pp.339-353
    • /
    • 1997
  • Fiber reinforced plastic (FRP) rods provide certain benefits over steel as concrete reinforcement, such as corrosion resistance, magnetic and electrical insulation, light weight, and high strength. FRP composites can be combined with a steel core to form hybrid reinforcing rods that take advantage of properties of both materials. The objective of this study was to characterize the bond behavior of hybrid FRP rods made with braided epoxy-impregnated aramid or poly-vinyl alcohol FRP skins. Eleven rod types were tested using two concrete strengths. Specific topics examined were bond strength, slip, and type of failure in concentric pull-out tests from concrete cubes. From analysis of identical pull-out tests on both hybrid and steel rods, information on relative bond strength and behavior were obtained. It is concluded that strength is similar but slip in hybrid rods is much higher. Hybrid rods failed either by pull-out or splitting the concrete block (with or without yielding of the steel core). Experimental data showed consistency with similar test results presented in the literature.

An Experiment Study for Flame Spread Prevention System of Snadwich Panels (샌드위치 패널의 화재확대 방지시스템 개발을 위한 실험적 연구)

  • Shin, Hyun-Joon;In, Ki-Ho;Yoo, Yong-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.6
    • /
    • pp.307-312
    • /
    • 2015
  • The sandwich panel is commonly used domestically because it's less costly and easier to handle. But fires have frequently occurred in buildings employing sandwich panels, such as the fires in Eecheon cold storage and in Gwangju Pyungdong industrial zone. Sandwich panels with steel plates on their surface prevent fire water from penetrating to the fire source, which makes it difficult to extinguish a fire in a timely manner. Toxic gas generated from some insulation material leads to serious loss of life and property. This study is intended to develop an extinguishing system for sandwich panels, thereby reducing the fire risk. Fire water and volume were determined in the wake of the study on the structure of a sandwich panel extinguishing system, and improvement and testing of the fire characteristics of the sandwich panel. Based on such study and test, a fire model test was conducted. Consequently, the sandwich panel with extinguishing system was proven to have a reduced fire risk, compared to traditional or fire retardant panels.