• 제목/요약/키워드: Instance-based learning

검색결과 131건 처리시간 0.023초

3D Cross-Modal Retrieval Using Noisy Center Loss and SimSiam for Small Batch Training

  • Yeon-Seung Choo;Boeun Kim;Hyun-Sik Kim;Yong-Suk Park
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권3호
    • /
    • pp.670-684
    • /
    • 2024
  • 3D Cross-Modal Retrieval (3DCMR) is a task that retrieves 3D objects regardless of modalities, such as images, meshes, and point clouds. One of the most prominent methods used for 3DCMR is the Cross-Modal Center Loss Function (CLF) which applies the conventional center loss strategy for 3D cross-modal search and retrieval. Since CLF is based on center loss, the center features in CLF are also susceptible to subtle changes in hyperparameters and external inferences. For instance, performance degradation is observed when the batch size is too small. Furthermore, the Mean Squared Error (MSE) used in CLF is unable to adapt to changes in batch size and is vulnerable to data variations that occur during actual inference due to the use of simple Euclidean distance between multi-modal features. To address the problems that arise from small batch training, we propose a Noisy Center Loss (NCL) method to estimate the optimal center features. In addition, we apply the simple Siamese representation learning method (SimSiam) during optimal center feature estimation to compare projected features, making the proposed method robust to changes in batch size and variations in data. As a result, the proposed approach demonstrates improved performance in ModelNet40 dataset compared to the conventional methods.

Smalltalk 패러다임을 이용한 객체지향 시뮬레이션기반 전문가시스템 (Object-Oriented Simulation-Based Expert System Using a Smalltalk Paradigm)

  • 김선욱;양문희
    • 산업경영시스템학회지
    • /
    • 제24권66호
    • /
    • pp.1-10
    • /
    • 2001
  • Simulation-Based Expert System(SIMBES) is a very effective tool to solve complex antral hard problems. The SIMBES model includes a simulator, a feature extractor, a machine learning system, a performance evaluator, and a Knowledge-Based Expert System(KBES). Since SIMBES depends on Problem domains, a schedule-based material requirements planning problem, which is NP-hard, was selected to exemplify the SIMBES model. To implement the SIMBES application in Smalltalk paradigm, a system class hierarchy was constructed. The hierarchy consists of five large classes such as Job Generator, Job Scheduler, Job Evaluator, Inference Engine, and Executive System. Several classes inside these classes were identified. Additionally, instance protocols about all classes have been described in terms of messages and pseudo methods. These protocols can be implemented easily by any other object-oriented languages. Furthermore, these results may be used as a skeletal system to develop a new SIMBES efficiently, especially when the application is related to other scheduling problems.

  • PDF

성공적인 ERP 시스템 구축 예측을 위한 사례기반추론 응용 : ERP 시스템을 구현한 중소기업을 중심으로 (An Application of Case-Based Reasoning in Forecasting a Successful Implementation of Enterprise Resource Planning Systems : Focus on Small and Medium sized Enterprises Implementing ERP)

  • 임세헌
    • Journal of Information Technology Applications and Management
    • /
    • 제13권1호
    • /
    • pp.77-94
    • /
    • 2006
  • Case-based Reasoning (CBR) is widely used in business and industry prediction. It is suitable to solve complex and unstructured business problems. Recently, the prediction accuracy of CBR has been enhanced by not only various machine learning algorithms such as genetic algorithms, relative weighting of Artificial Neural Network (ANN) input variable but also data mining technique such as feature selection, feature weighting, feature transformation, and instance selection As a result, CBR is even more widely used today in business area. In this study, we investigated the usefulness of the CBR method in forecasting success in implementing ERP systems. We used a CBR method based on the feature weighting technique to compare the performance of three different models : MDA (Multiple Discriminant Analysis), GECBR (GEneral CBR), FWCBR (CBR with Feature Weighting supported by Analytic Hierarchy Process). The study suggests that the FWCBR approach is a promising method for forecasting of successful ERP implementation in Small and Medium sized Enterprises.

  • PDF

딥러닝 기반 일별 야구 관중 수 예측 (Deep Learning-Based Daily Baseball Attendance Predcition)

  • 이현희;손서영;박민서
    • 문화기술의 융합
    • /
    • 제10권3호
    • /
    • pp.131-135
    • /
    • 2024
  • 한국에서 야구는 프로 스포츠 종목 중 가장 많은 관중 수를 동원하고 있다. 특히 수입 대부분이 입장 수입이기 때문에 관중 수가 무엇보다 중요하다. 기존 연구는 타 종목이나 모든 구장을 동시에 고려하고 있어 구장 별 관중수를 예측이 쉽지 않다는 한계가 존재한다. 예를 들어 기아 타이거즈는 국내 구단 중 가장 높은 원정 수입을 보이는데에 반해 낮은 홈 수입을 보인다. 따라서, 본 연구에서는 딥러닝(Deep Learning)을 사용하여 기아 타이거즈의 광주 - 기아 챔피언스 필드의 일별 관중 수를 예측하고자 한다. 2018년~2023년의 광주 - 기아 챔피언스 필드의 일별 관중 수와 날짜, 날씨, 팀과 관련된 변수를 수집하고 전처리한다. 전처리 한 데이터를 활용하여 일별 관중 수를 예측하는 딥러닝기반 선형 회귀모델을 제안한다. 본 연구를 통해 구단의 수익 증대를 위한 기초 자료로 활용할 수 있을 것으로 기대한다.

Alpha-cut과 Beta-pick를 이용한 시그너쳐 기반 침입탐지 시스템과 기계학습 기반 침입탐지 시스템의 결합 (A Combination of Signature-based IDS and Machine Learning-based IDS using Alpha-cut and Beta pick)

  • 원일용;송두헌;이창훈
    • 정보처리학회논문지C
    • /
    • 제12C권4호
    • /
    • pp.609-616
    • /
    • 2005
  • 시그너쳐 기반 침입탐지 기술은 과탐지(false positive)가 많고 새로운 공격이나 변형된 유형의 공격을 감지하기 어렵다 우리는 앞선 논문[1]을 통해 시그너쳐 기반 침입 탐지 시스템과 기계학습 기반 침입 탐지 시스템을 Alpha-cut 방법을 이용하여 결합한 모델을 제시 하였다. 본 논문은 Alpha-cut의 후속연구로 기존 모델에서 감지하지 못하는 미탐지(false negative)를 줄이기 위한 Beta-pick 방법을 제안한다. Alpha-cut은 시그너쳐 기반 침입탐지 시스템의 공격 탐지결과에 대한 정확성을 높이는 방법인 반면에, Beta-rick은 공격을 정상으로 판단하는 경우를 줄이는 방법이다. Alpha-cut과 Beta-pick을 위해 사용된 기계학습 알고리즘은 XIBL(Extended Instance based Learner)이며, C4.5를 적용했을 때와 차이점을 결과로서 제시한다. 제안한 방법의 효과를 설명하기 위해 시그너쳐 기반 침입탐지 시스템의 탐지결과에 Alpha-cut과 Beta-pick을 적용하여 오경보(false alarm)가 감소함을 보였다.

Improved prediction of soil liquefaction susceptibility using ensemble learning algorithms

  • Satyam Tiwari;Sarat K. Das;Madhumita Mohanty;Prakhar
    • Geomechanics and Engineering
    • /
    • 제37권5호
    • /
    • pp.475-498
    • /
    • 2024
  • The prediction of the susceptibility of soil to liquefaction using a limited set of parameters, particularly when dealing with highly unbalanced databases is a challenging problem. The current study focuses on different ensemble learning classification algorithms using highly unbalanced databases of results from in-situ tests; standard penetration test (SPT), shear wave velocity (Vs) test, and cone penetration test (CPT). The input parameters for these datasets consist of earthquake intensity parameters, strong ground motion parameters, and in-situ soil testing parameters. liquefaction index serving as the binary output parameter. After a rigorous comparison with existing literature, extreme gradient boosting (XGBoost), bagging, and random forest (RF) emerge as the most efficient models for liquefaction instance classification across different datasets. Notably, for SPT and Vs-based models, XGBoost exhibits superior performance, followed by Light gradient boosting machine (LightGBM) and Bagging, while for CPT-based models, Bagging ranks highest, followed by Gradient boosting and random forest, with CPT-based models demonstrating lower Gmean(error), rendering them preferable for soil liquefaction susceptibility prediction. Key parameters influencing model performance include internal friction angle of soil (ϕ) and percentage of fines less than 75 µ (F75) for SPT and Vs data and normalized average cone tip resistance (qc) and peak horizontal ground acceleration (amax) for CPT data. It was also observed that the addition of Vs measurement to SPT data increased the efficiency of the prediction in comparison to only SPT data. Furthermore, to enhance usability, a graphical user interface (GUI) for seamless classification operations based on provided input parameters was proposed.

A Learning-based Power Control Scheme for Edge-based eHealth IoT Systems

  • Su, Haoru;Yuan, Xiaoming;Tang, Yujie;Tian, Rui;Sun, Enchang;Yan, Hairong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권12호
    • /
    • pp.4385-4399
    • /
    • 2021
  • The Internet of Things (IoT) eHealth systems composed by Wireless Body Area Network (WBAN) has emerged recently. Sensor nodes are placed around or in the human body to collect physiological data. WBAN has many different applications, for instance health monitoring. Since the limitation of the size of the battery, besides speed, reliability, and accuracy; design of WBAN protocols should consider the energy efficiency and time delay. To solve these problems, this paper adopt the end-edge-cloud orchestrated network architecture and propose a transmission based on reinforcement algorithm. The priority of sensing data is classified according to certain application. System utility function is modeled according to the channel factors, the energy utility, and successful transmission conditions. The optimization problem is mapped to Q-learning model. Following this online power control protocol, the energy level of both the senor to coordinator, and coordinator to edge server can be modified according to the current channel condition. The network performance is evaluated by simulation. The results show that the proposed power control protocol has higher system energy efficiency, delivery ratio, and throughput.

Intelligent Intrusion Detection and Prevention System using Smart Multi-instance Multi-label Learning Protocol for Tactical Mobile Adhoc Networks

  • Roopa, M.;Raja, S. Selvakumar
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권6호
    • /
    • pp.2895-2921
    • /
    • 2018
  • Security has become one of the major concerns in mobile adhoc networks (MANETs). Data and voice communication amongst roaming battlefield entities (such as platoon of soldiers, inter-battlefield tanks and military aircrafts) served by MANETs throw several challenges. It requires complex securing strategy to address threats such as unauthorized network access, man in the middle attacks, denial of service etc., to provide highly reliable communication amongst the nodes. Intrusion Detection and Prevention System (IDPS) undoubtedly is a crucial ingredient to address these threats. IDPS in MANET is managed by Command Control Communication and Intelligence (C3I) system. It consists of networked computers in the tactical battle area that facilitates comprehensive situation awareness by the commanders for timely and optimum decision-making. Key issue in such IDPS mechanism is lack of Smart Learning Engine. We propose a novel behavioral based "Smart Multi-Instance Multi-Label Intrusion Detection and Prevention System (MIML-IDPS)" that follows a distributed and centralized architecture to support a Robust C3I System. This protocol is deployed in a virtually clustered non-uniform network topology with dynamic election of several virtual head nodes acting as a client Intrusion Detection agent connected to a centralized server IDPS located at Command and Control Center. Distributed virtual client nodes serve as the intelligent decision processing unit and centralized IDPS server act as a Smart MIML decision making unit. Simulation and experimental analysis shows the proposed protocol exhibits computational intelligence with counter attacks, efficient memory utilization, classification accuracy and decision convergence in securing C3I System in a Tactical Battlefield environment.

AIMS: AI based Mental Healthcare System

  • Ibrahim Alrashide;Hussain Alkhalifah;Abdul-Aziz Al-Momen;Ibrahim Alali;Ghazy Alshaikh;Atta-ur Rahman;Ashraf Saadeldeen;Khalid Aloup
    • International Journal of Computer Science & Network Security
    • /
    • 제23권12호
    • /
    • pp.225-234
    • /
    • 2023
  • In this era of information and communication technology (ICT), tremendous improvements have been witnessed in our daily lives. The impact of these technologies is subjective and negative or positive. For instance, ICT has brought a lot of ease and versatility in our lifestyles, on the other hand, its excessive use brings around issues related to physical and mental health etc. In this study, we are bridging these both aspects by proposing the idea of AI based mental healthcare (AIMS). In this regard, we aim to provide a platform where the patient can register to the system and take consultancy by providing their assessment by means of a chatbot. The chatbot will send the gathered information to the machine learning block. The machine learning model is already trained and predicts whether the patient needs a treatment by classifying him/her based on the assessment. This information is provided to the mental health practitioner (doctor, psychologist, psychiatrist, or therapist) as clinical decision support. Eventually, the practitioner will provide his/her suggestions to the patient via the proposed system. Additionally, the proposed system prioritizes care, support, privacy, and patient autonomy, all while using a friendly chatbot interface. By using technology like natural language processing and machine learning, the system can predict a patient's condition and recommend the right professional for further help, including in-person appointments if necessary. This not only raises awareness about mental health but also makes it easier for patients to start therapy.

Car detection area segmentation using deep learning system

  • Dong-Jin Kwon;Sang-hoon Lee
    • International journal of advanced smart convergence
    • /
    • 제12권4호
    • /
    • pp.182-189
    • /
    • 2023
  • A recently research, object detection and segmentation have emerged as crucial technologies widely utilized in various fields such as autonomous driving systems, surveillance and image editing. This paper proposes a program that utilizes the QT framework to perform real-time object detection and precise instance segmentation by integrating YOLO(You Only Look Once) and Mask R CNN. This system provides users with a diverse image editing environment, offering features such as selecting specific modes, drawing masks, inspecting detailed image information and employing various image processing techniques, including those based on deep learning. The program advantage the efficiency of YOLO to enable fast and accurate object detection, providing information about bounding boxes. Additionally, it performs precise segmentation using the functionalities of Mask R CNN, allowing users to accurately distinguish and edit objects within images. The QT interface ensures an intuitive and user-friendly environment for program control and enhancing accessibility. Through experiments and evaluations, our proposed system has been demonstrated to be effective in various scenarios. This program provides convenience and powerful image processing and editing capabilities to both beginners and experts, smoothly integrating computer vision technology. This paper contributes to the growth of the computer vision application field and showing the potential to integrate various image processing algorithms on a user-friendly platform