• 제목/요약/키워드: Instance

검색결과 2,055건 처리시간 0.029초

Real-Time Instance Segmentation Method Based on Location Attention

  • Li Liu;Yuqi Kong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권9호
    • /
    • pp.2483-2494
    • /
    • 2024
  • Instance segmentation is a challenging research in the field of computer vision, which combines the prediction results of object detection and semantic segmentation to provide richer image feature information. Focusing on the instance segmentation in the street scene, the real-time instance segmentation method based on SOLOv2 is proposed in this paper. First, a cross-stage fusion backbone network based on position attention is designed to increase the model accuracy and reduce the computational effort. Then, the loss of shallow location information is decreased by integrating two-way feature pyramid networks. Meanwhile, cross-stage mask feature fusion is designed to resolve the small objects missed segmentation. Finally, the adaptive minimum loss matching method is proposed to decrease the loss of segmentation accuracy due to object occlusion in the image. Compared with other mainstream methods, our method meets the real-time segmentation requirements and achieves competitive performance in segmentation accuracy.

사례 선택 기법을 활용한 앙상블 모형의 성능 개선 (Improving an Ensemble Model Using Instance Selection Method)

  • 민성환
    • 산업경영시스템학회지
    • /
    • 제39권1호
    • /
    • pp.105-115
    • /
    • 2016
  • Ensemble classification involves combining individually trained classifiers to yield more accurate prediction, compared with individual models. Ensemble techniques are very useful for improving the generalization ability of classifiers. The random subspace ensemble technique is a simple but effective method for constructing ensemble classifiers; it involves randomly drawing some of the features from each classifier in the ensemble. The instance selection technique involves selecting critical instances while deleting and removing irrelevant and noisy instances from the original dataset. The instance selection and random subspace methods are both well known in the field of data mining and have proven to be very effective in many applications. However, few studies have focused on integrating the instance selection and random subspace methods. Therefore, this study proposed a new hybrid ensemble model that integrates instance selection and random subspace techniques using genetic algorithms (GAs) to improve the performance of a random subspace ensemble model. GAs are used to select optimal (or near optimal) instances, which are used as input data for the random subspace ensemble model. The proposed model was applied to both Kaggle credit data and corporate credit data, and the results were compared with those of other models to investigate performance in terms of classification accuracy, levels of diversity, and average classification rates of base classifiers in the ensemble. The experimental results demonstrated that the proposed model outperformed other models including the single model, the instance selection model, and the original random subspace ensemble model.

로컬 API(Anomaly Process Instances) 탐지법을 이용한 컨테이너 터미널 이벤트 분석 (The use of Local API(Anomaly Process Instances) Detection for Analyzing Container Terminal Event)

  • 전대욱;배혜림
    • 한국전자거래학회지
    • /
    • 제20권4호
    • /
    • pp.41-59
    • /
    • 2015
  • 시스템이 다양화 되면서 동시에 저장된 로그도 다양하게 분석할 필요가 생겼다. 이러한 로그 데이터 분석에 관한 필요성이 강해지는 환경이 시간 순으로 발생하는 이벤트 단위의 로그로부터 프로세스 모델을 도출하고, 시스템을 개선시키는 활동에 이바지하도록 요구하고 있다. 기존에는 개별 이벤트 단위의 로그를 분석하면서 속성들의 관계를 파악하는 연구가 활발했다. 본 논문에서는 로그 데이터를 활용한 예외적인 형태의 프로세스 인스턴스를 판별하는 방법으로 LAPID(Local Anomaly Process Instance Detection)를 제안한다. LAPID는 액티비티-릴레이션 매트릭스(Activity relation matrix)를 사용해서 계산된 거리 값을 활용하여, API(Anomaly Process Instance)를 탐색한다. 제시한 방법의 유용성을 검증하기 위하여 항만 물류에서 발생하는 컨테이너 이동에 대한 트레이스(Trace)를 포함하는 로그 데이터에서 예외적인 상황의 프로세스 실행이 가지는 특징을 도출하였다. 이를 위하여 본 논문에서는 국내의 실제 항만에서 발생한 이벤트 로그를 이용하여 사례연구를 수행하였다.

난이도-거리 상관관계 기반의 문제 인스턴스 공간 분석 (Analyzing Problem Instance Space Based on Difficulty-distance Correlation)

  • 전소영;김용혁
    • 한국지능시스템학회논문지
    • /
    • 제22권4호
    • /
    • pp.414-424
    • /
    • 2012
  • 문제 인스턴스 탐색 혹은 자동 생성은 알고리즘 분석 및 테스트에 적용될 수 있으며, 하드웨어, 소프트웨어 프로그램, 계산 이론 등 다양한 수준에서 연구되어온 주제이다. 본 연구에서는 해(解) 공간에 사용된 목적값-거리 상관관계 분석을 문제 인스턴스 공간에 적용하였다. 문제 인스턴스의 목적값은 문제에 따라 알고리즘의 수행 시간과 최적해를 잘 구하는 정도로 정의하였다. 이러한 정의는 문제 인스턴스의 난이도로 해석할 수 있다. 상관관계는 3가지 측면에서 분석하였다: 첫째, 알고리즘과 거리 함수에 따른 상관관계 차이, 둘째, 알고리즘의 개선 전/후의 상관관계 변화, 셋째, 문제 인스턴스 공간과 해당 문제의 해 공간 사이의 연관성. 본 논문은 문제 인스턴스 공간에 상관계수 분석이 어떻게 적용될 수 있는지 보여주며, 문제 인스턴스 공간 분석을 본격적으로 다루는 첫번째 시도이다.

긍정 데이터 분포를 반영한 다중 인스턴스 지지 벡터 기계 학습 (Learning Multiple Instance Support Vector Machine through Positive Data Distribution)

  • 황중원;박성배;이상조
    • 정보과학회 논문지
    • /
    • 제42권2호
    • /
    • pp.227-234
    • /
    • 2015
  • 본 논문에서는 데이터 분포를 고려한 다중 인스턴스 지지 벡터 기계 학습 알고리즘을 제안한다. 기존의 방법은 긍정 가방 안에서 "가장 긍정"인 인스턴스만 고려하여 마진을 찾는다. 일반적으로 다중 인스턴스로 표현된 데이터에서, 긍정 가방에 포함된 인스턴스들 중 실제로 긍정을 나타내는 인스턴스들은 자질 공간 상에서 서로 유사한 곳에 위치해 있다. 제안한 방법은 기존의 다중 인스턴스 지지 벡터 기계 학습 알고리즘 중에서 긍정 인스턴스들의 교차점을 찾아 이 교차점과 거리를 계산하여 "가장 긍정"인 인스턴스를 선택한다. 긍정 인스턴스들의 교차점인 피벗 포인트를 구하는 방식은 두 가지이다. 먼저, 학습과정 중 추정된 긍정 인스턴스들의 중심점을 사용하는 방법과 학습 시작 시에 가장 긍정일 것으로 예상되는 긍정 인스턴스들의 중심점을 찾는 방법으로 나뉜다. 총 12개의 벤치마크 다중 인스턴스 데이터 셋을 통해 제안한 방법이 기존의 학습 알고리즘에 비해 더 좋은 성능을 보임을 보인다.

3DF-GML 인스턴스 문서의 데이터베이스 저장을 위한 모듈 개발 (Developing a Module to Store 3DF-GML Instance Documents in a Database)

  • 이강재;장건업;이지영
    • Spatial Information Research
    • /
    • 제19권6호
    • /
    • pp.87-100
    • /
    • 2011
  • 최근 다양한 분야에서 GML 응용스키마로서 수행되는 여러 모델이 설계되어 왔다. GML 응용 스키마는 여러 응용 영역에 특화되어 활용되고 있고, GML 표준에 정의되어 있는 각종 기하 타입을 이용하여 객체 타입을 명시한다. GML 인스턴스 문서는 그러한 GML 응용 스키마에 근거하여 생성되어진다. GML 인스턴스 문서는 일반적으로 엄청난 양의 지리적 객체를 표현하기 위해 많은 저장 공간을 필요로 한다. 따라서 GML 인스턴스 문서를 관계형 데이터베이스에 저장하는 것은 효율적인 관리와 이용을 위해 필수적이다. 관계형 데이터베이스는 상대적으로 이용하기 편리하며, 다양한 분야에서 이용되고 있어 호환성도 높다. 게다가 데이터베이스 구조는 기본적으로 파일 구조보다 많은 양의 데이터를 관리함에 있어 더욱 효율적이다. 현재까지 GML 문서를 저장하기 위해 수많은 연구가 진행되었지만, GML 응용스키마를 기반으로 작성된 GML 인스턴스 문서를 데이터베이스에 저장하기 위한 연구는 적은 편이다. 따라서 본 연구에서는 GML 인스턴스 문서를 관계형 데이터베이스에 저장하기 위한 저장 모듈을 개발하였다.

그래프 구조를 이용한 카테고리 구조로부터 상하위 관계 추출 (Graph-based ISA/instanceOf Relation Extraction from Category Structure)

  • 최동현;최기선
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제37권6호
    • /
    • pp.464-469
    • /
    • 2010
  • 상하위 관계 자동 추출은 분류체계를 자동 구축하는 데 있어서 핵심적인 내용이며, 이렇게 자동으로 구축된 분류 체계는 정보 추출과 같은 여러 가지 분야에 있어서 중요하게 사용된다. 본 논문에서는 카테고리 구조로부터 상하위 관계를 추출하는 방식에 대하여 제안한다. 본 논문에서는 판별하고자 하는 카테고리 구조뿐만이 아닌, 그와 관련된 다른 카테고리 구조까지 고려하여 카테고리 이름에 나타난 토큰들간의 수식 그래프를 구축한 후, 그래프 분석 알고리즘을 통하여 각 카테고리 구조가 상하위 관계일 가능성에 대한 점수를 매긴다. 실험 결과, 본 알고리즘은 기존의 연구로 상하위 관계임을 판별할 수 없었던 일부 카테고리 구조에 대하여 성공적으로 상하위 관계인지를 판별하였다.

귀납법칙 학습과 개체위주 학습의 결합방법 (A Combined Method of Rule Induction Learning and Instance-Based Learning)

  • 이창환
    • 한국정보처리학회논문지
    • /
    • 제4권9호
    • /
    • pp.2299-2308
    • /
    • 1997
  • 대부분의 기계학습 방법들은 특정한 방법을 중심으로 연구되어 왔다. 하지만 두 가지 이상의 기계학습방법을 효과적으로 통합할 수 있는 방법에 대한 요구가 증가하며, 이에 따라 본 논문은 귀납법칙 (rule induction) 방법과 개체위주 학습방법 (instance-based learning)을 통합하는 시스템의 개발을 제시한다. 귀납법칙 단계에서는 엔트로피 함수의 일종인 Hellinger 변량을 사용하여 귀납법칙을 자동 생성하는 방법을 보이고, 개체위주 학습방법에서는 기존의 알고리즘의 단점을 보완한 새로운 개체위주 학습방법을 제시한다. 개발된 시스템은 여러 종류의 데이터에 의해 실험되었으며 다른 기계학습 방법과 비교되었다.

  • PDF

Edge-Labeled 그래프 기반의 XML 인스턴스 저장 모델 (A XML Instance Repository Model based on the Edge-Labeled Graph)

  • 김정희;곽호영
    • 인터넷정보학회논문지
    • /
    • 제4권6호
    • /
    • pp.33-42
    • /
    • 2003
  • 본 논문에서는 Edge-Labeled Graph에 기반하여 XML 인스턴스들을 관계형 데이터베이스내에 저장하는 모델을 제안하고 구현한다. 저장 모델은 저장되는 XMI 인스턴스들을 Edge-Labeled Graph에 기반하여 데이터 그래프로 표현하며, 표현한 데이터 그래프상의 정보를 저장하기 위해 데이터베이스 스키마로 제시된 데이터 경로, 요소, 속성, 테이블 인덱스 테이블의 구조에 따라 정의된 값들을 추출하고 Mapper 모듈을 이용하여 저장하며 질의를 지원하기 위해, XPATH를 따르는 질의 언어인 XQL을 SQL로 변환하는 모듈, 또한 저장된 XML 인스턴스를 복원하는 DBtoXML 모듈을 갖도록 하였다. 구현 결과, XML 인스턴스들과 제안한 저장 모델 구조로의 저장 관계가 그래프 기반의 경로를 이용한 표현으로 가능했으며, 동시에, 특정 요소 또는 속성들의 정보들을 쉽게 검색할 수 있는 가능성을 보였다.

  • PDF

Mask R-CNN을 이용한 물체인식 및 개체분할의 학습 데이터셋 자동 생성 (Automatic Dataset Generation of Object Detection and Instance Segmentation using Mask R-CNN)

  • 조현준;김다윗;송재복
    • 로봇학회논문지
    • /
    • 제14권1호
    • /
    • pp.31-39
    • /
    • 2019
  • A robot usually adopts ANN (artificial neural network)-based object detection and instance segmentation algorithms to recognize objects but creating datasets for these algorithms requires high labeling costs because the dataset should be manually labeled. In order to lower the labeling cost, a new scheme is proposed that can automatically generate a training images and label them for specific objects. This scheme uses an instance segmentation algorithm trained to give the masks of unknown objects, so that they can be obtained in a simple environment. The RGB images of objects can be obtained by using these masks, and it is necessary to label the classes of objects through a human supervision. After obtaining object images, they are synthesized with various background images to create new images. Labeling the synthesized images is performed automatically using the masks and previously input object classes. In addition, human intervention is further reduced by using the robot arm to collect object images. The experiments show that the performance of instance segmentation trained through the proposed method is equivalent to that of the real dataset and that the time required to generate the dataset can be significantly reduced.