• Title/Summary/Keyword: Instability region

Search Result 324, Processing Time 0.027 seconds

High-Performance, Fully-Transparent and Top-Gated Oxide Thin-Film Transistor with High-k Gate Dielectric

  • Hwang, Yeong-Hyeon;Cho, Won-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.276-276
    • /
    • 2014
  • High-performance, fully-transparent, and top-gated oxide thin-film transistor (TFT) was successfully fabricated with Ta2O5 high-k gate dielectric on a glass substrate. Through a self-passivation with the gate dielectric and top electrode, the top-gated oxide TFT was not affected from H2O and O2 causing the electrical instability. Heat-treated InSnO (ITO) was used as the top and source/drain electrode with a low resistance and a transparent property in visible region. A InGaZnO (IGZO) thin-film was used as a active channel with a broad optical bandgap of 3.72 eV and transparent property. In addition, using a X-ray diffraction, amorphous phase of IGZO thin-film was observed until it was heat-treated at 500 oC. The fabricated device was demonstrated that an applied electric field efficiently controlled electron transfer in the IGZO active channel using the Ta2O5 gate dielectric. With the transparent ITO electrodes and IGZO active channel, the fabricated oxide TFT on a glass substrate showed optical transparency and high carrier mobility. These results expected that the top-gated oxide TFT with the high-k gate dielectric accelerates the realization of presence of fully-transparent electronics.

  • PDF

Effect of a Preprocessing Method on the Inversion of OH* Chemiluminescence Images Acquired for Visualizing SNG Swirl-stabilized Flame Structure (SNG 선회 안정화 화염구조 가시화를 위한 OH* 자발광 이미지 역변환에서 전처리 효과)

  • Ahn, Kwang Ho;Song, Won Joon;Cha, Dong Jin
    • Journal of the Korean Society of Combustion
    • /
    • v.20 no.1
    • /
    • pp.24-31
    • /
    • 2015
  • Flame structure, which contains a useful information for studying combustion instability of the flame, is often quantitatively visualized with PLIF (planar laser-induced fluorescence) and/or chemiluminescence images. The latter, a line-integral of a flame property, needs to be preprocessed before being inverted, mainly due to its inherent noise and the axisymmetry assumption of the inversion. A preprocessing scheme utilizing multi-division of ROI (region of interest) of the chemiluminescence image is proposed. Its feasibility has been tested with OH PLIF and $OH^*$ chemiluminescence images of SNG (synthetic natural gas) swirl-stabilized flames taken from a model gas turbine combustor. It turns out that the multi-division technique outperforms two conventional ones: those are, one without preprocessing and the other with uni-division preprocessing, reconstructing the SNG flame structure much better than its two counterparts, when compared with the corresponding OH PLIF images. It is also found that the Canny edge detection algorithm used for detecting edges in the multi-division method works better than the Sobel algorithm does.

Modeling of Stress-strain Curve for Cold Rolled Electrical Steel (냉간 압연된 전기강판의 응력-변형률 곡선 모델)

  • Yoo, U.K.;Byon, S.M.;Lee, Y.
    • Transactions of Materials Processing
    • /
    • v.17 no.4
    • /
    • pp.272-277
    • /
    • 2008
  • A constitutive equation of the electrical steel strip used for a raw material of transformer is proposed. The stress-strain behavior of electrical steel strip is quite different from that of common carbon steel and/or alloy steel. A series of tensile tests were performed with the specimens made from cold rolled strip. Several thicknesses of the strip were produced by a two-high (with upper and lower rolls) cold rolling pilot mill as reduction ratio increases from 10% to 90%. Its initial thickness of the strip was 2.5mm. Tensile specimens are cut out from the cold rolled strips. Mechanical properties of the steel are examined through rolling direction. Ramberg-Osgood model and the proposed equation are combined to describe the total behavior of stress-strain including instability region. The stress-strain curves calculated from the present constitutive equation are compared with those from experimentally obtained at each test condition of reduction ratios of specimen. Results show that the predicted stress-strain curves are in overall in a good agreement with measured ones.

Numerical Simulation of the Effect of Pressure Fluctuation on the Modulation of Equivalence Ratio at the Fuel Injection Hole (압력변동이 연료 분사구에서의 당량비 변동에 미치는 영향에 관한 수치 해석)

  • Kim, Hyeon-Jun;Hong, Jung-Goo;Shin, Hyun-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.3 s.258
    • /
    • pp.292-299
    • /
    • 2007
  • In gas turbine technology, the flame stability is inherently greater in conventional diffusion type combustion over a wider range fuel to oxidizer ratio. However, premixed type combustion which has narrow flame stability region, is widely used due to environmental reason. It has been observed in experiments that combustion instability of low frequency (${\sim}10Hz$) results from the modulation of equivalence ratio at fuel injection hole when a pressure fluctuation propagates upwards along the channel of the burner under an unchoked fuel flow condition. In this study, a commercial program was used to determine how the fuel flow rate changed with respect to the pressure, velocity of the fuel flow and the mass fraction in a choked and an unchoked condition. The calculation focuses on the upstream of the dump plane to know how the forced pressure with the fuel injection conditions affects the modulation of the equivalence ratio. Therefore, it is found that pressure fluctuation leads to oscillation of mass flow rate and then results in equivalence ratio modulation under the unchoked fuel flow condition.

Effect of Si on Spatter Generation and Droplet Transfer Phenomena of MAG Wwlding (MAG 용접의 스패터 발생 및 용적이행현상에 미치는 Si의 영향)

  • 안영호;이종봉;엄동석
    • Journal of Welding and Joining
    • /
    • v.17 no.3
    • /
    • pp.36-43
    • /
    • 1999
  • The effect of Si content in welding wires on spattering characteristics and droplet transfer phenomena was studied. In MAG welding using 80% Ar-20% $CO_2$ shielding gas, spattering characteristics and droplet transfer phenomena were varied with Si content of wire. With increasing Si content, the spattering ratio and the ratio of large size spatter $(d\geq1.0mm)$ were increased. The increase of Si content in molten metal made surface tension increase due to reduction of oxygen content, which resulted from deoxidizing action of silicon. The increase of surface tension resulted in unstable transfer phenomena and arc instability in both short circuit and spray region. With changing Si content of wire, spattering characteristics and droplet transfer phenomena was directly influenced by the variation of surface tension, compared with the effect of arc stability.

  • PDF

Study on Performance and Durability of the Proton Exchange Membrane Fuel Cell with Different Micro Porous Layer Penetration Thickness (미세다공층의 침투깊이가 다른 기체확산층이 고분자전해질 연료전지의 성능과 내구성에 미치는 영향에 관한 연구)

  • Cho, Junhyun;Park, Jaeman;Oh, Hwanyeong;Min, Kyoungdoug;Jyoung, Jy-Young;Lee, Eunsook
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.81.2-81.2
    • /
    • 2011
  • The gas diffusion layer (GDL) consists of two main parts, the GDL backing layer, called as a substrate and the micro porous layer (MPL) coated on the GDBL. In this process, carbon particles of MPL penetrates to the GDBL consequently forms MPL penetration part. In this study, the micro porous layer (MPL) penetration thickness is determined as a design parameter of the GDL which affect pore size distribution profile through the GDL inducing different mass transfer characteristics. The pore size distribution and water permeability characteristics of the GDL are investigated and the cell performance is evaluated under fully/low humidification conditions. Transient response and voltage instability are also studied. In addition, to determine the effects of MPL penetration on the degradation, the carbon corrosion stress test is conducted. The GDL that have deep MPL penetration thickness shows better performance in high current density region because of enhanced water management, however, loss of penetrated MPL parts is shown after aging and it induces worse water management characteristics.

  • PDF

Equation for Estimating Natural Frequencies of Initially Stressed Rectangular Plates (초기응력을 받는 직사각형판의 고유진동수 산정식 개발)

  • Park, Sung-Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.1
    • /
    • pp.150-159
    • /
    • 2014
  • A simplified method for the calculation of buckling and vibrational characteristics of initially stressed rectangular plate and antisymmetric angle-ply laminated plates is presented in this paper using the natural frequencies under unloading state. The equation of motion of rectangular plate with two opposite edges simply supported is investigated on the basis of Rayleigh-Ritz method and Mindlin plate theory with effect of the curvature term. The relationships of the non-dimensional natural frequencies with initial stresses the coeffcients of critical buckling and the boundaries of the dynamic principal instability region can be characterized by the non-dimensional natureal frequencies under unloading state. Numerical examples are presented to verify the simplified equations and to illustrate potential applications of the analysis.

A Case Study of Heavy Rainfall by A Developed Convective System over Gangneung on 6 August 2018 (2018년 8월 6일 발달한 대류계에 의해 발생한 강릉지역의 집중호우 사례 연구)

  • Park, Sung-Kyu;Lee, Jae Gyoo
    • Atmosphere
    • /
    • v.30 no.2
    • /
    • pp.125-139
    • /
    • 2020
  • On 6 August 2018, heavy rainfall of daily precipitation of more than 200 mm occurred in the Yeong-dong coastal area, and especially, 1-hour precipitation of 93 mm (0251~0351 LST (local standard time) 6 August) at Gangneung station, ranked second in the history of meteorological survey of the station. In this study, this heavy rainfall case over the Gangneung area would be studied to investigate the process in which the heavy rainfall occurred. A developed ridge moved toward the Yeong-dong coastal area from the Maritime Province in Russia. The approaching of the ridge led to the northeasterly cold wind over the coastal region, causing the collision between the incoming northeasterly cold wind, and the humid and warm (convectively unstable) air located over the Yeong-dong area. This collision led to a strong convergence (maximum -206 × 10-5 s-1) at 925 hPa level over the vicinity of Gangneung at 0300 LST 6 August, resulting updraft of up to about 4.4 m s-1 at 700 hPa level over the area. This strong updraft forced to lift rapidly the convectively unstable, warm and humid air layer, located over the vicinity of Gangneung, leading to the heavy rainfall (1-hour precipitation of 93 mm) over the area.

연소 안정성 평가 시험을 통한 배플 길이의 안정성 여분 평가

  • Kim, Hong-Jip;Lee, Kwang-Jin;Seo, Seong-Hyeon;Kim, Seung-Han;Han, Yeoung-Min;Seol, Woo-Seok
    • Aerospace Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.188-196
    • /
    • 2004
  • To optimize and limit the axial length of baffle in KSR-III engine, stability rating tests using pulse gun as one of artificial disturbance devices have been done. Decay time and other parameters for the evaluation of stabilization ability of engine to external perturbation have been analyzed to quantify stabilization capacity of engine, in other words, dynamic stability margin. If baffle does not cover flame zone enough which can be considered as collision region of injector, it wasn't be able to suppress external perturbation sufficiently. The limit of combustion stability margin of engine is assumed to be 50 mm length baffle.

  • PDF

Parametric resonance of composite skew plate under non-uniform in-plane loading

  • Kumar, Rajesh;Kumar, Abhinav;Panda, Sarat Kumar
    • Structural Engineering and Mechanics
    • /
    • v.55 no.2
    • /
    • pp.435-459
    • /
    • 2015
  • Parametric resonance of shear deformable composite skew plates subjected to non-uniform (parabolic) and linearly varying periodic edge loading is studied for different boundary conditions. The skew plate structural model is based on higher order shear deformation theory (HSDT), which accurately predicts the numerical results for thick skew plate. The total energy functional is derived for the skew plates from total potential energy and kinetic energy of the plate. The strain energy which is the part of total potential energy contains membrane energy, bending energy, additional bending energy due to additional change in curvature and shear energy due to shear deformation, respectively. The total energy functional is solved using Rayleigh-Ritz method in conjunction with boundary characteristics orthonormal polynomials (BCOPs) functions. The orthonormal polynomials are generated for unit square domain using Gram-Schmidt orthogonalization process. Bolotin method is followed to obtain the boundaries of parametric resonance region with higher order approximation. These boundaries are traced by the periodic solution of Mathieu-Hill equations with period T and 2T. Effect of various parameters like skew angle, span-to-thickness ratio, aspect ratio, boundary conditions, static load factor on parametric resonance of skew plate have been investigated. The investigation also includes influence of different types of linearly varying loading and parabolically varying bi-axial loading.