• 제목/요약/키워드: Inside heat exchanger

검색결과 161건 처리시간 0.025초

자동차 공조용 증발기의 고성능화에 관한 연구 (Study on Development of High Performance Evaporator for Automotive Air Conditioner)

  • 강정길;김기효;박태영;김종수
    • 설비공학논문집
    • /
    • 제7권1호
    • /
    • pp.73-80
    • /
    • 1995
  • The object of the present study is to develop a high performance evaporator for automotive air conditioner. The experiment has been conducted on evaporative heat transfer coefficient inside a plate type heat exchanger with a sharp 180-degree turn flow. The test plates have different formed surface, cross-ribbed channel and elliptical-ribbed channel. Also experimental study has been performed to determine optimal design in elliptical-ribbed plate heat exchanger with different turn clearance. In addition to the above experiments, refrigerant behavior and surface temperature distribution in the plate heat exchanger were observed using color thermoviewer(infrared thermometer). In this experiment, working fluid was used R-12 and test conditions were as follows : (1) saturation pressure of $2.116kg/cm^2$, (2) mass fluxes of 40 to $70kg/m^2s$, (3) heat fluxes of 4,500 to $7,300W/m^2$, (4) inlet quality of 0.1 to 0.7. The results indicated that the evaporative heat transfer coefficient of an elliptical-ribbed plate heat exchanger was higher than that of cross-ribbed plate heat exchanger. Also optimal turn clearance in an elliptical-ribbed plate heat exchanger was determined.

  • PDF

냉매 R410A를 적용한 실내 열교환기 설계 (Design of an Indoor Heat Exchanger that Apply Refrigerant R410A)

  • 김범찬;박창석;차우호;김성수;강용태
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.317-322
    • /
    • 2008
  • The objectives of this paper are to study the effects of thermal and geometric conditions on the performance of indoor heat exchanger with R410A for Gas Engine Driven Heat Pump (GHP) application and to find optimum design conditions of indoor heat exchanger by parametric analysis for the key parameters. In the air side, moisture out of the humid air condenses on the fin surface while the refrigerant (R410A) boils inside the smooth tube. Therefore this study uses Log Mean Enthalpy Difference (LMHD) method to analyze the heat transfer from the humid air to the refrigerant of R410A. The results show that fin pitch and longitudinal pitch have significant effect on the heat exchanger preformance. This study will provide the guideline for optimum design of indoor heat exchanger with R410A for GHP application.

  • PDF

휜-관 열교환기의 착상 성능 해석 (Analysis of Frosting Performance of a Fin-Tube Heat Exchanger)

  • 양동근;이관수
    • 설비공학논문집
    • /
    • 제17권11호
    • /
    • pp.965-973
    • /
    • 2005
  • This paper proposes a mathematical model for predicting the frosting performance on a fin-tube heat exchanger. The model consists of empirical correlations of average heat transfer coefficients for the plate and tube surfaces and a diffusion equation inside the frost layer. The numerical results are compared with experimental data for the frost thickness, the frosting rate and the heat transfer rate to validate the proposed model. The results are in good agreement with the experimental data, and show that this model can be applied to predict frosting performance of common fin-tube heat exchanger.

냉각탑 백연방지의 성능 향상에 관한 실험적 연구 (An Experimental Study on the Cooling Tower of Plume Prevention and Performance Improvements)

  • 정순영;이병천;김성
    • 한국수소및신에너지학회논문집
    • /
    • 제30권6호
    • /
    • pp.578-584
    • /
    • 2019
  • The occurrence of white plume in the cooling tower is phenomenon that the steam in the air through the cooling tower fan is condensed again by the cold ambient air to become saturated moist air. Accordingly, this can cause many problems like spoiling landscape around the cooling tower, odor of ambient air, falling accident by frozenness in the winter, and traffic accident, etc. This study was to install the heat exchanger in the inside of the cooling tower in order to prevent the white plume phenomenon in the cooling tower without affecting the performance of cooling tower. In addition, this study was to discharge the part of cooling water into the atmosphere through the recirculation of heat exchanger after creating dry air by heating the saturated moist air to the dew point temperature. At that time, this study was to conduct the experimental study in order to secure the optimal design data to prevent the white plume in the cooling tower because it checked the dry·moist temperature and relative humidity in the inside·outside of cooling tower on the moist air, and evaluated the performance of the heat exchanger.

Chevron 유로 내의 미시적 해석 결과를 통한 대형 판형열교환기 특성에 대한 준미시적 해석 (A Semimicroscopic Analysis for the Characteristics of a Large Plate Heat Exchanger through a Microscopic Flow and Heat Transfer Analyses inside a Chevron Passages)

  • 이나리;이명성;이상혁;허남건
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.1159-1165
    • /
    • 2009
  • In the present study, the flow and heat transfer characteristics of a large plate heat exchanger are investigated numerically. The flow passages are very complicated due to the grooved corrugation patterns of the plate surface so that the detailed mesh and the large amount of the computation time have to be required in the numerical simulation for the conjugate heat transfer analysis. In order to accomplish the efficient and fast analysis of the heat transfer characteristics in the plate heat exchanger, a semimicroscopic method using the porous media model has been investigated numerically. The results showed that the characteristics of the heat transfer and pressure drop, which are respectively presented with Colburn j-factor and Fanning f-factor, are in a good agreement between the detailed mesh and the porous media model. The results of the present study could be applicable to the numerical analysis of entire flow passages in the large plate heat exchanger using porous media treatment.

  • PDF

Reynolds 수에 따른 꺾어진 덕트에서 열/물질전달 특성 고찰 (Effects of Reynolds Number on Flow and Heat/Mass Characteristics Inside the Wavy Duct)

  • 장인혁;황상동;조형희
    • 설비공학논문집
    • /
    • 제15권10호
    • /
    • pp.809-820
    • /
    • 2003
  • The present study investigates effects of flow velocity on the convective heat/mass transfer characteristics in wavy ducts of a primary surface heat exchanger application. Local heat/mass transfer coefficients on the wavy duct sidewall are determined by using a naphthalene sublimation technique. The flow visualization technique is used to understand the overall flow structures inside the duct. The aspect ratio and corrugation angle of the wavy duct is fixed at 7.3 and 145$^{\circ}$ respectively, and the Reynolds numbers, based on the duct hydraulic diameter, vary from 100 to 5,000. The results show that there exist complex secondary flows and transfer processes resulting in non-uniform distributions of the heat/mass transfer coefficients on the duct side walls. At low Re (Re<1000), relatively high heat/mass transfer regions like cell shape appear on both pressure and suction side wall due to the secondary vortex flows called Taylor-Gortler vortices perpendicular to the main flow direction. However, at high Re (Re>1000), these secondary flow cells disappear and boundary layer type flow characteristics are observed on pressure side wall and high heat/mass transfer region by the flow reattachment appears on the suction side wall. The average heat/mass transfer coefficients are higher than those of the smooth circular duct due to the secondary flows inside wavy duct. And also friction factors are about two times greater than those of the smooth circular duct.

판형열교환기에서 R-22 냉매의 이상 압력 손실계수 평가 (Experimental measurements of R-22 two-phase friction factor in plate heat exchangers)

  • 유상훈;정지환
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2273-2278
    • /
    • 2007
  • Brazed Plate Heat Exchanger (BPHE) is a type of compact plate heat exchanger with parallel corrugated plates which are brazed together in series. Each plate hascorrugation called herringbone pattern. Inside a BPHE, hot fluid and cold fluid alternate its flow direction to establish counter current flow configuration. Two-phase flow heat transfer and pressure drop of R-22 in BPHE were experimentally measured in this study. In the present experiments, single-phase region and two-phase region coexist in a BPHE. Therefore, the inside of a BPHE have to be divided into single phase region and two phase region and analyzed accordingly. The results from the single phase flow analysis are then extended to the two phase flow analysis to correlate the condensation and evaporation heat transfer and pressure drop for the refrigerant R-22 in the BPHEs. Previous models for two- phase friction factor have been compared with the present experimental results.

  • PDF

차량용 열교환기 사각관 내부 흐름에서 압력강하 및 열전달 특성 (Pressure Drop and Heat Transfer Characteristics of Internal Flow of the Rectangular Tube for Automobile Heat Exchanger)

  • 강희찬;전길웅;김광일
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2006년 제4회 한국유체공학학술대회 논문집
    • /
    • pp.489-492
    • /
    • 2006
  • The present work was performed to investigate the thermal and hydraulic characteristics of flow inside the plain and turbulator flat tubes for the automobile application. The pressure drop and heat transfer coefficient at laminar, transition and turbulent regimes were studied experimentally and numerically. The flow transition was confirmed by flow visualization and quantitative data. It is proposed equations for the friction and heat transfer coefficient in the fully developed laminar flow inside rectangular tube as function of aspect ratio.

  • PDF

Effects of Cladding and Antifreeze Solution on Cavitation Corrosion of AA3003 Tube of Heat Exchanger for Automobile

  • Young Ran Yoo;Seung Heon Choi;Hyunhak Cho;Young Sik Kim
    • Corrosion Science and Technology
    • /
    • 제23권3호
    • /
    • pp.203-214
    • /
    • 2024
  • A heat exchanger is a device designed to transfer heat between two or more fluids. In a vehicle's thermal management system, Al heat exchangers play a critical role in controlling and managing heat for efficient and safe operation of the engine and other components. The fluid used to prevent heat exchangers from overheating the engine is mostly tap water. Heat exchange performance can be maintained at sub-zero temperatures using a solution mixed with antifreeze. Although the fluid flowing through the heat exchanger can reduce the temperature inside the engine, it also has various problems such as cavitation corrosion. Cavitation corrosion characteristics in tap water and corrosion characteristics were evaluated in this study when antifreeze was added for test specimens where AA4045 was cladded on the inner surface of AA3003 tubes of a fin-type heat exchanger. The cavitation corrosion resistance of AA3003 was found to be superior to that of AA4045 regardless of the test solution due to higher corrosion resistance and hardness of AA3003 than those of AA4045. The cavitation corrosion rate of Al alloys increased with the addition of antifreeze.

공냉식 방사형 열교환기를 갖는 흡착식 히트펌프의 성능 (Performance of adsorption heat pump with radial shape adsorber heat exchanger for air cooling)

  • 백남춘;양윤섭;윤응상;이진국;주문창
    • 설비공학논문집
    • /
    • 제9권1호
    • /
    • pp.73-81
    • /
    • 1997
  • In this experimental study, the air cooling radial shape heat exchanger which influences on the COP and the cooling capacity by heat and mass transfer rate in the adsorbent bed was designed and applied to test its performance for adsorption heat pump(AHP). Zeolite-water was used for the adsorbent-adsorbat pair. As a result, the cooling COP and a cycle period of this adsorption heat pump are 0.28 and 2 hours, respectively, on the condition of none heat recovery from the adsorption reactor(absorber). The other results and recommendations are mainly related to improving the heat and mass transfer inside the absorber to reduce a cycle period.

  • PDF