• Title/Summary/Keyword: Inside diameter

Search Result 742, Processing Time 0.027 seconds

Carbon Monoxide Emission and Radiation Properties in Ceramic Fiber Radiant Burner (세라믹 화이버 버너의 CO 배출과 복사강도 특성)

  • Jeong, Yong-Ki;Kim, Young-Soo;Lee, Dae-Rae;Yang, Dae-Bong;Ryu, Jung-Wan;Yun, Alexander;Chang, Young-June;Jeon, Chung-Hwan
    • 한국연소학회:학술대회논문집
    • /
    • 2007.05a
    • /
    • pp.176-183
    • /
    • 2007
  • An experimental study was performed to investigate the effects of mixing quality, inlet pressure, nozzle diameter on CO emission and radiation characteristics in porous ceramic fiber radiant burners. Observations of combustion characteristics occurring inside the burner system which was insulated fiber mat, were investigated by measuring temperature, CO emission and radiation characteristics. Combustion was achieved at the firing rate of $88{\sim}99$ kcal/hr, inlet pressure of $100{\sim}250$mm$H_2O$. CO emissions were found to be strongly dependent on the operating conditions. There was a tendency that CO concentration increased as the firing rate increases. The reason for rise of CO concentration is that it becomes the relatively rich condition. The fiber burner exhibit significant both spectral intensity peaks in the bands at 2.5${\mu}m$ and 4.0${\mu}m$ relatively, There is a small difference in the variable mixing tube. However spectral intensity increased with the firing rate.

  • PDF

An Experimental study on Heat Characteristics of Horizontal Tubes with Fin in Fluidized Bed Combustor (유동층 연소로 내에서 수평 휜 전열관의 열전달 특성에 관한 실험적 연구)

  • Kang, Hyung-Soo;Chung, Tae-Yong
    • Journal of the Korean Society of Combustion
    • /
    • v.1 no.1
    • /
    • pp.19-29
    • /
    • 1996
  • This study is to investigate the characteristics of heat transfer of a horizontal tube, with radial fins of various configuration, immersed in a high temperature fluidized bed. The experimental heat transfer variation is compared with that of a smooth tube. The finned tubes and smooth tube, with outside and inside diameter of 48.6mm and 30.6mm, are made of steel tubes. The depth of the fin is 5mm, the rake angles of fin are $25^{\circ},\;35^{\circ},\;45^{\circ}$ and the widthes of fin for each rake angle are 0mm, 1mm, 2mm and 3mm. A bed temperature is fixed at $880\;{\pm}\;10^{\circ}C$. A granular refractory(silica sand) is used as a bed material with mean particle diameters of 1.22mm and 1.54mm. The maximum heat transfer coefficient is achieved with the rake angle of $25^{\circ}$ and the width of 0mm for the mean particle size 1.22mm. The coefficient is 2.14 times larger than that for a smooth tube. The rake angle for the maximum heat transfer coefficient depends on the particle size of bed material. Also the transfer coefficient decreases as the width of fin increases.

  • PDF

Behavior of Circular Hollow Section R.C Member with Internal Corrugated Steel Tube (파형강관을 삽입한 중공원형단면 철근콘크리트 부재의 거동에 관한 연구)

  • Im, Jung-Soon;Kim, Sung-Chil;Jo, Jae-Byung;Lee, Soo-Keun
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.3 no.1 s.8
    • /
    • pp.123-131
    • /
    • 2003
  • An experiment was carried out to investigate the mechanical behaviour of the circular hollow section reinforced concrete member with internal corrugated steel tube. A specimen, 50cm in diameter and 340cm in length, was made and tested by 3 points bending. The test load was increased slowly (quasi static) to the failure or unacceptable deformation. During the test, lateral displacement at mid point and longitudinal displacement of extreme fiber on compressive and tensile side of the specimen were measured. The measured data were analysed and compared with calculated results for the equivalent member without inserted corrugated steel tube. The comparison shows that the flexural strength and ductility of hollow section reinforced concrete members can be improved by inserting corrugated steel tubes inside.

Pseudoaneurysm of Ulnar Artery after Endoscopic Carpal Tunnel Release

  • Ryu, Sung-Joo;Kim, In-Soo
    • Journal of Korean Neurosurgical Society
    • /
    • v.48 no.4
    • /
    • pp.380-382
    • /
    • 2010
  • The authors present an extremely rare case of a pseudoaneurysm of the ulnar artery as a complication of a two-portal endoscopic carpal tunnel release (ECTR). A 70-year-old man with chronic renal failure and on maintenance hemodialysis with a left arteriovenous fistula presented with paresthesia of his right hand. A clinical diagnosis of right carpal tunnel syndrome was confirmed by ultrasonography and an electro physiologic study. He underwent two-portal ECTR, and the paresthesia was much improved. However, he presented to us one month after operation with severe pain, a tender mass distal to the right wrist crease and more aggravation of the paresthesia in the ulnar nerve distribution. Doppler ultrasound was performed and revealed a hypo echoic lesion 20 mm in diameter in the right palm, with arterial Doppler flow inside connected to the palmar segment of the ulnar artery. An ulnar artery pseudoaneurysm was diagnosed and treated by ultrasound-guided percutaneous thrombin injection. Transverse color Doppler ultrasound image showed complete thrombosis of the pseudoaneurysm and flow cessation after a total injection of 500 units of thrombin. The symptoms were also improved.

A Study on the Design of Fuel Transfer Pumps Gear Part for the Aircraft (항공기용 연료이송펌프 기어부 설계에 관한 연구)

  • Lee, Jung-hoon;Kim, Joon-tae
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.1
    • /
    • pp.1-7
    • /
    • 2020
  • This paper discusses a series of procedures and results for designing the gear part of a fuel transfer pump for an aircraft, developed as an independent technology for the first time in Korea. A gear pump type is selected because the design requirements of the fuel transfer pump are met by a gear pump with a characteristics of less leakage inside than a vane pump with superior overall performance. The gear housing is designed with suitable clearance, considering the outer diameter of the gear, which is the main factor on which the flow can be determined. Additionally, the calculation of the required hydraulic and axial force for the motor to drive the fuel transfer pump was performed.

Band Gap Tuning in Nanoporous TiO2-ZrO2 Hybrid Thin Films

  • Kim, Chang-Sik;Jeong, Hyun-Dam
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.12
    • /
    • pp.2333-2337
    • /
    • 2007
  • Nanoporous TiO2 and ZrO2 thin films were spin-coated using a surfactant-templated approach from Pluronic P123 (EO20PO70EO20) as the templating agent, titanium alkoxide (Ti(OC4H9)4) as the inorganic precursor, and butanol as a the solvent. The control of the electronic structure of TiO2 is crucial for its various applications. We found that the band gap of the hybrid nanoporous thin films can be easily tuned by adding an acetylacetonestabilized Zr(OC4H9)4 precursor to the precursor solution of Ti(OC4H9)4. Pores with a diameter of 5 nm-10 nm were randomly dispersed and partially connected to each other inside the films. TiO2 and ZrO2 thin films have an anatase structure and tetragonal structure, respectively, while the TiO2-ZrO2 hybrid film exhibited no crystallinity. The refractive index was significantly changed by varying the atomic ratio of titanium to zirconium. The band gap for the nanoporous TiO2 was estimated to 3.43 eV and that for the TiO2-ZrO2 hybrid film was 3.61 eV.

A Numerical Study on the Spray-to-Spray Impingement System

  • Lee, Seong-Hyuk;Ko, Gwon-Hyun;Ryou, Hong-Sun
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.235-245
    • /
    • 2002
  • The present article aims to perform numerical calculations for inter-spray impingement of two diesel sprays under a high injection pressure and to propose a new hybrid model for droplet collision on the basis of literature findings. The hybrid model is compared with the original O'Rourke's model, which has been widely used for spray calculations. The main difference between the hybrid model and the O'Rourke's model is mainly in determination of the collision threshold condition, in which the preferred directional effect of droplets and a critical collision radius are included. The Wave model involving the cavitation effect inside a nozzle is used for predictions of atomization processes. Numerical results are reported for different impingement angles of 60°and 90°in order to show the influence of the impinging angle on spray characteristics and also compared with experimental data. It is found that the hybrid model shows slightly better agreement with experimental data than the O'Rourke's model.

Application of DFB Diode Laser Sensor to Reacting Flow (II) - Liquid-Gas 2-Phase Reacting Flow -

  • Park, Gyung-Min;Masashi Katsuki;Kim, Duck-Jool
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.139-145
    • /
    • 2003
  • Diode laser sensor is conducted to measure the gas temperature in the liquid-gas 2-phase counter flow flame. C$\_$10/H/ sub 22/ and city gas were used as liquid fuel and gas fuel, respectively. Two vibrational overtones of H$_2$O were selected and measurements were carried out in the spray flame region stabilized the above gaseous premixed flame. The path-averaged temperature measurement using diode laser absorption method succeeded in the liquid fuel combustion environment regardless of droplets of wide range diameter. The path-averaged temperature measured in the post flame of liquid-gas 2-phase counter flow flame showed qualitative reliable results. The successful demonstration of time series temperature measurement in the liquid-gas 2-phase counter flow flame gave us motivation of trying to establish the effective control system in practical combustion system. These results demonstrated the ability of real-time feedback from combustor inside using the non-intrusive measurement as well as the possibility of application to practical combustion system. Failure case due to influence of spray flame was also discussed.

A Study on the Temperature Uniformity for the Anti-Corrosion Coating Process of Large-Sized Water Pipes (대형배관 내부식 코팅공정의 온도 균일성 향상을 위한 와류날개 형상 연구)

  • Park, Jaehyun;Park, Heesung;Kim, Sootae;Kang, Gyuongmoo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.6
    • /
    • pp.35-40
    • /
    • 2016
  • In this study, the thermal and fluid dynamic characteristics for the coating process of large-sized water pipes was studied by heating the inside of a pipe directly with a gas burner. Heat and flow analyses were performed on large pipes with various inlet shapes. Using large pipes for coating was shown to be the proper shape for heating large pipes uniformly. This type has a screw with a diameter of 200 mm installed at the inlet to provide a rotational motion to the heating air. The rotational motion resulted in a uniform temperature distribution that ranged from $289.1^{\circ}C$ to $352.1^{\circ}C$ The optimized geometric configuration of the inlet of the pipe successfully and uniformly enhanced the thermal characteristics of the devised temperature limit.

Real-Time Prediction of Electrode Wear for the Small Hole Pass-Through by EDM-drill (방전 드릴을 이용한 미세 홀 관통 공정의 전극 소모량 실시간 예측)

  • Choi, Yong-Chan;Huh, Eun-Young;Kim, Jong-Min;Lee, Cheol-Soo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.2
    • /
    • pp.268-274
    • /
    • 2013
  • Electric discharge machining drill (EDM-drill) is an efficient process for the fabrication of micro-diameter deep metal hole. As there is non-physical contact between tool (electrode) and workpiece, EDM-drill is widely used to machine the hard machining materials such as high strength steel, cemented carbide, titanium alloys. The electro-thermal energy forces the electrode to wear out together with the workpiece to be machined. The electrode wear occurs inside of a machining hole. and It causes hard to monitor the machining state, which leads the productivity and the quality to decrease. Thus, this study presents a methodology to estimated the electrode wear amount while two coefficients (scale factor and shape factor) of the logarithmic regression model are evaluated from the experiment result. To increase the accuracy of estimation model, the linear transformation method is adopted using the differences of initial electrode wear differences. The estimation model is verified through experiment. The experimental result shows that within minute error, the estimation model is able to predict accurately.