• Title/Summary/Keyword: Insertion losses

Search Result 110, Processing Time 0.025 seconds

Design and Analysis of Refractometer Based on Bend Waveguide Structure with Air Trench for Optical Sensor Applications

  • Ryu, Jin Hwa;Lee, Woo-Jin;Lee, Bong Kuk;Do, Lee-Mi;Lee, Kang Bok;Um, Namkyoung;Baek, Kyu-Ha
    • ETRI Journal
    • /
    • v.36 no.5
    • /
    • pp.841-846
    • /
    • 2014
  • This study proposes a novel optical sensor structure based on a refractometer combining a bend waveguide with an air trench. The optical sensor is a $1{\times}2$ splitter structure with a reference channel and a sensing channel. The reference channel has a straight waveguide. The sensing channel consists of a U-bend waveguide connecting four C-bends, and a trench structure to partially expose the core layer. The U-bend waveguide consists of one C-bend with the maximum optical loss and three C-bends with minimum losses. A trench provides a quantitative measurement environment and is aligned with the sidewall of the C-bend having the maximum loss. The intensity of the output power depends on the change in the refractive index of the measured material. The insertion loss of the proposed optical sensor changes from 3.7 dB to 59.1 dB when the refractive index changes from 1.3852 to 1.4452.

Highly Miniaturized and Performed UWB Bandpass Filter Embedded into PCB with SrTiO3 Composite Layer

  • Cheon, Seong-Jong;Park, Jun-Hwan;Park, Jae-Yeong
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.4
    • /
    • pp.582-588
    • /
    • 2012
  • In this paper, a highly miniaturized and performed UWB bandpass filter has been newly designed and implemented by embedding all the passive elements into a multi-layered PCB substrate with high dielectric $SrTiO_3$ composite film for 3.1 - 4.75 GHz compact UWB system applications. The high dielectric composite film was utilized to increase the capacitance densities and quality factors of capacitors embedded into the PCB. In order to reduce the size of the filter and avoid parasitic EM coupling between the embedded filter circuit elements, it was designed by using a $3^{rd}$ order Chebyshev circuit topology and a capacitive coupled transformation technology. Independent transmission zeros were also applied for improving the attenuation of the filter at the desired stopbands. The measured insertion and return losses in the passband were better than 1.68 and 12 dB, with a minimum value of 0.78 dB. The transmission zeros of the measured response were occurred at 2.2 and 5.15 GHz resulting in excellent suppressions of 31 and 20 dB at WLAN bands of 2.4 and 5.15 GHz, respectively. The size of the fabricated bandpass filter was $2.9{\times}2.8{\times}0.55(H)mm^3$.

A Coupled Line Impedance Transformer for High Termination Impedance with a Bandpass Filtering Response

  • Kim, Phirun;Jeong, Yongchae
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.1
    • /
    • pp.41-45
    • /
    • 2018
  • In this study, a short-ended coupled line with a short-circuit stub transmission line bandpass filtering impedance transformer is presented. The general designed equations are derived on the basis of circuit theory. The design curves are provided to examine the characteristic of the proposed impedance transformer. The proposed circuit is suitable for high termination impedance. To validate the design formulas, a $400-50{\Omega}$ impedance transformer is designed and fabricated at the operating center frequency ($f_0$) of 2.6 GHz. The measured results show a good agreement with the simulation. The measured insertion and return losses are 0.6 dB and 22.5 dB at $f_0$, respectively. The measured return loss is higher than 20 dB within the passband frequency of 2.51-2.7 GHz. Moreover, the stopband attenuation is higher than 25 dB from DC to 1.64 GHz of the lower stopband and from 3.12 GHz to 6.4 GHz of the higher stopband.

Design of a Boradband Power Divider by Distributed Network Synthesis (분포정수 회로합성에 의한 광대역 전력분배기 설계)

  • Kim, Nam-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.5
    • /
    • pp.1134-1138
    • /
    • 2008
  • In this paper, the synthesis of distributed impedance transformers is presented that is essential for power divider design, whereby a broadband power divider is designed. Transfer functions of distributed transformers are synthesized with Chebyshev approximation, and their element values are calculated for various minimum insertion losses(MIL) and ripples. Desired performance of transformers is obtained by optimizing MIL's and ripples of a transfer function. As an application example, a four-way power divider is designed that operates over 2 to 8GHz frequency range. Experimental results are shown to approach the design performance, so transformer design by distributed network synthesis proves to be useful to power divider design.

New Split Ring Resonator and Band-pass Filter Using Meta-Material (메타 인공 물질을 이용한 새로운 Split-Ring 공진기 및 대역통과 필터)

  • Yoon, Ki-Cheol;Lee, Jong-Chul
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.9 no.4
    • /
    • pp.22-31
    • /
    • 2010
  • In this paper, a new split ring resonator using left-handed meta-material adapted in a bandpass filter with 2-stages is suggested. In this proposed bandpass filter, the size of the novel resonator can be easily controlled. Also, the bandwidth can be adjusted with the position of the tapped-line. The proposed resonator and filter has the center frequency of 10 GHz for I-band in military-satellite communication system with the Qe value of 184. The experimental results of the filter show that the insertion and return losses are 1.43 dB and 16.8 dB with bandwidth of 10 %, respectively.

Fiber-Optic Directional Coupler Using HF Wet-Etching (플루오린화 수소산의 습식식각법을 이용한 광섬유형 방향성 결합기)

  • Son, Gyeongho;Jung, Youngho;Yu, Kyoungsik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.1
    • /
    • pp.25-32
    • /
    • 2017
  • In this paper, a fabrication method of low-loss tapered optical fibers coupler using hydrofluoric acid with surface tension driven is proposed. The proposed fabrication method is very simple compared to flame-based method, and shows low excess insertion losses compared to polishing method. The adiabatic-tapered structure along the coupling region of the coupler shows wavelength independent characteristic over the C-band in optical communication system, and will enable promising applications.

Analysis of Via Loss Characteristic in Embedded DPDT Switch Using SoP-L Fabrication (SoP-L 공정을 이용한 DPDT 스위치를 임베딩 할 경우 스위치 특성에 영향을 주는 Via의 loss 분석)

  • Mun, Jong-Won;Gwon, Eun-Jin;Ryu, Jong-In;Park, Se-Hoon;Kim, Jun-Chul
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.557-558
    • /
    • 2008
  • This paper presents the effects of via losses to be connected with an embedded DPDT(Double Pole Double Thru) in a substrate. The substrate consists of two ABF(Ajinomoto Bonding Film) and a Epoxy core. In order to verify and test effects of via, via chains in a substrate using SoP-L process are proposed and measured. Via loss can be calculated as averaging the total via holes. The exact loss of a DPDT switch embedded in substrate are extracted by using the results of via chain and measured data from embedded DPDT. The calculated one via insertion loss is about 0.0005 dB on basis of measured via chains. This result confirms very low loss in via. So the inserti on loss of the embedded switch is confirmed only switch loss as loss is 0.4 dB.

  • PDF

Design, Fabrication and Test of the Micro Optical Add/Drop Module Using Silicon Optical Bench and Automatic Optical Fiber/Filter Alignment System (실리콘 광벤치 및 자동 광섬유/필터 정렬시스템을 이용한 극소형 광통신용 Add/Drop 모듈의 설계 제작 및 실험)

  • 최두선;박한수;서영호;김성곤;제태진;황경현
    • Transactions of Materials Processing
    • /
    • v.13 no.3
    • /
    • pp.211-215
    • /
    • 2004
  • Recently, one of remarkable tends in the development of optical communication industry is the miniaturization and integration of products. The alignment system of micro optical module is a key apparatus for the miniaturization of optical module and the development of optical communication parts with high functionality. In this research, we have developed a system capable of automatic alignment of a $30\mu\textrm{m}$-thick film filter and a lensed fiber in order to improve the speed and losses in the optical fiber-to-filter alignment of optical modules. Using the developed automatic alignment system and silicon optical bench, we have measured optical loss and characteristics of the assembled optical add/drop module before packaging $1{\times}1$ OADM optical module. Whole size of add/drop module was less than $5mm{\times}5mm{\times}1mm$. The measured maximum insertion loss was 0.294㏈ that is below 0.3㏈ which is a standard loss of optical module.

A Low-loss Phase Shifter with Harmonics Suppression Using Compact Hybrid Coupler (소형 하이브리드 커플러를 이용한 고조파가 억압된 저손실 위상 변위기)

  • Yoon, Ki-Cheol;Ji, Seung-Han;Lee, Jong-Chul
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.14 no.6
    • /
    • pp.110-116
    • /
    • 2015
  • In this paper, a compact low-loss reflector-type phase shifter with harmonic suppression using meander T-shaped branch-line coupler is suggested. The compact coupler for the phase shifter has a size of $22.2{\times}14.9mm^2$ while a conventional branch coupler has a size of $32.6{\times}27.8mm^2$. The phase shifter shows insertion losses of 0.19-0.28 dB at the center frequency of 2.1 GHz, and a measured maximum phase shift of $137^{\circ}$.

X-Band 6-Bit Phase Shifter with Low RMS Phase and Amplitude Errors in 0.13-㎛ CMOS Technology

  • Han, Jang-Hoon;Kim, Jeong-Geun;Baek, Donghyun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.4
    • /
    • pp.511-519
    • /
    • 2016
  • This paper proposes a CMOS 6-bit phase shifter with low RMS phase and amplitude errors for an X-band phased array antenna. The phase shifter combines a switched-path topology for coarse phase states and a switch-filter topology for fine phase states. The coarse phase shifter is composed of phase shifting elements, single-pole double-throw (SPDT), and double-pole double-throw (DPDT) switches. The fine phase shifter uses a switched LC filter. The phase coverage is $354.35^{\circ}$ with an LSB of $5.625^{\circ}$. The RMS phase error is < $6^{\circ}$ and the RMS amplitude error is < 0.45 dB at 8-12 GHz. The measured insertion loss is < 15 dB, and the return losses for input and output are > 13 dB at 8-12 GHz. The input P1dB of the phase shifter achieves > 11 dBm at 8-12 GHz. The current consumption is zero with a 1.2-V supply voltage. The chip size is $1.46{\times}0.83mm^2$, including pads.