• Title/Summary/Keyword: Input power level

Search Result 585, Processing Time 0.026 seconds

THREE LEVEL SINGLE-PHASE SINGLE STAGE AC/DC RESONANT CONVERTER WITH A WIDE OUTPUT OPERATING VOLTAGE RANGE (넓은 출력 전압제어범위를 갖는 3레벨 단상 단일전력단 AC/DC 컨버터)

  • Marius, Takongmo;Lee, G.W;Kim, M.J;Kim, E.S
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.434-435
    • /
    • 2018
  • In this paper, a single-phase single-stage three-level AC/DC converter with a wide controllable output voltage is presented. It integrates a PFC converter and a three level DC/DC converter into one. The proposed converter operates at a fixed frequency and provides a wide controllable output voltage ($200V_{dc}-430V_{dc}$) with high efficiencies over a wide load range. In addition, the input boost inductors operate in a discontinuous mode to improve the input power factor. Moreover, all the switching devices operate with ZVS, and the converter's THD is small especially at full load. The feasibility of the proposed converter is verified with experimental results of a 1.5kW prototype.

  • PDF

Cascaded H-Bridge Five Level Inverter for Grid Connected PV System using PID Controller

  • Sivagamasundari, M.S.;Mary, P. Melba
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.4
    • /
    • pp.451-462
    • /
    • 2016
  • Photovoltaic energy conversion becomes main focus of many researches due to its promising potential as source for future electricity and has many advantages than the other alternative energy sources like wind, solar, ocean, biomass, geothermal etc. In Photovoltaic power generation multilevel inverters play a vital role in power conversion. The three different topologies, diode-clamped (neutral-point clamped) inverter, capacitor-clamped (flying capacitor) inverter and cascaded h-bridge multilevel inverter are widely used in these multilevel inverters. Among the three topologies, cascaded h-bridge multilevel inverter is more suitable for photovoltaic applications since each pv array can act as a separate dc source for each h-bridge module. This paper presents a single phase Cascaded H-bridge five level inverter for grid-connected photovoltaic application using sinusoidal pulse width modulation technique. This inverter output voltage waveform reduces the harmonics in the generated current and the filtering effort at the input. The control strategy allows the independent control of each dc-link voltages and tracks the maximum power point of PV strings. This topology can inject to the grid sinusoidal input currents with unity power factor and achieves low harmonic distortion. A PID control algorithm is implemented in Arm Processor LPC2148. The validity of the proposed inverter is verified through simulation and is implemented in a single phase 100W prototype. The results of hardware are compared with simulation results. The proposed system offers improved performance over conventional three level inverter in terms of THD.

Input Signal Selection Circuits Development of Electronic Cards for Thermal Degradation in Nuclear Power Plant (원전 열화 전자카드의 입력신호 선택회로 개발)

  • Kim, Jong-ho;Che, Gyu-shik
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.6
    • /
    • pp.554-560
    • /
    • 2019
  • Excore Nuclear Flux Monitoring System in Nuclear Power Plant monitors continuous reactor power up to maximum 200%. The monitoring method, however, has to be different depending on the reactor power level. Because the logarithmic pulse signals must be counted and processed exactly due to large uncertainty if their levels are low, on the other hand, they must be processed through statistical methodolgies if theirs are high to get exact monitoring values, in point of thermal degradation view. Therefore, we developed thermal degradation input signal selection circuit to transfer low level reactor power monitoring circuit to high level reactor power circuit at rated value in this paper. We proved their validities through testing them using real data used in nuclear power plant and analyzed their results. And, These methods will be used to measure the neutron level of excore nuclear flux monitoring system in nuclear power plant.

Hybrid ZVS Converter with a Wide ZVS Range and a Low Circulating Current

  • Lin, Bor-Ren;Chen, Jia-Sheng
    • Journal of Power Electronics
    • /
    • v.15 no.3
    • /
    • pp.652-659
    • /
    • 2015
  • This paper presents a new hybrid soft switching dc-dc converter with a low circulating current and high circuit efficiency. The proposed hybrid converter includes two sub-converters sharing two power switches. One is a three-level PWM converter and the other is a LLC converter. The LLC converter and the three-level converter share the lagging-leg switches and extend the zero-voltage switching (ZVS) range of the lagging-leg switches from nearly zero to full load since the LLC converter can be operated at fsw (switching frequency) $\approx$ fr (series resonant frequency). A passive snubber is used on the secondary side of the three-level converter to decrease the circulating current on the primary side, especially at high input voltage and full load conditions. Thus, the conduction losses due to the circulating current are reduced. The output sides of the two converters are connected in series. Energy can be transferred from the input voltage to the output load within the whole switching period. Finally, the effectiveness of the proposed converter is verified by experiments with a 1.44kW prototype circuit.

Development of a Computer Code for Low-and Intermediate-Level Radioactive Waste Disposal Safety Assessment

  • Park, J.W.;Kim, C.L.;Lee, E.Y.;Lee, Y.M.;Kang, C.H.;Zhou, W.;Kozak, M.W.
    • Journal of Radiation Protection and Research
    • /
    • v.29 no.1
    • /
    • pp.41-48
    • /
    • 2004
  • A safety assessment code, called SAGE (Safety Assessment Groundwater Evaluation), has been developed to describe post-closure radionuclide releases and potential radiological doses for low- and intermediate-level radioactive waste (LILW) disposal in an engineered vault facility in Korea. The conceptual model implemented in the code is focused on the release of radionuclide from a gradually degrading engineered barrier system to an underlying unsaturated zone, thence to a saturated groundwater zone. The radionuclide transport equations are solved by spatially discretizing the disposal system into a series of compartments. Mass transfer between compartments is by diffusion/dispersion and advection. In all compartments, radionuclides ate decayed either as a single-member chain or as multi-member chains. The biosphere is represented as a set of steady-state, radionuclide-specific pathway dose conversion factors that are multiplied by the appropriate release rate from the far field for each pathway. The code has the capability to treat input parameters either deterministically or probabilistically. Parameter input is achieved through a user-friendly Graphical User Interface. An application is presented, which is compared against safety assessment results from the other computer codes, to benchmark the reliability of system-level conceptual modeling of the code.

Three Level Single-Phase Single Stage AC/DC Resonant Converter With A Wide Output Operating Voltage Range (넓은 출력 전압제어범위를 갖는 3레벨 단상 단일전력단 AC/DC 컨버터)

  • Marius, Takongmo;Kim, Min-Ji;Oh, Jae-Sung;Lee, Gang-Woo;Kim, Eun-Soo;Hwang, In-Gab
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.6
    • /
    • pp.424-432
    • /
    • 2018
  • This study presents a single-phase single-stage three-level AC/DC converter with a wide controllable output voltage. The proposed AC/DC converter is designed to extend the application of e-mobility, such as electric vehicles. The single-stage converter integrates a PFC converter and a three-level DC/DC converter, operates at a fixed frequency, and provides a wide controllable output voltage (approximately 200-430Vdc) with high efficiencies over a wide load range. In addition, the input boost inductors operate in a discontinuous mode to improve the input power factor. The switching devices operate with ZVS, and the converter's THD is small, especially at full load. The feasibility of the proposed converter is verified by the experimental results of a 1.5 kW prototype.

High Gain and High Efficiency Class-E Power Amplifier Using Controlling Drain Bias for WPT (드레인 조절회로를 이용한 무선전력전송용 고이득 고효율 Class-E 전력증폭기 설계)

  • Kim, Sanghwan;Seo, Chulhun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.9
    • /
    • pp.41-45
    • /
    • 2014
  • In this paper, a high-efficiency power amplifier is implemented by using a drain bias control circuit operated at low input power for WPT(Wireless Power Transfer). Adaptive bias control circuit was added to high-efficiency class-E amplifier. It was possible to obtain the overall improvement in efficiency by adjusting the drain bias at low input power. The proposed adaptive class-E amplifier is implemented by using the input and output matching network and serial resonant circuit for improvement in efficiency. Drain bias control circuit consists of a directional coupler, power detector, and operational amplifier for adjusting the drain bias according to the input power. The measured results show that output powers of 41.83 dBm were obtained at 13.56 MHz. At this frequency, we have obtained the power added efficiency(PAE) of 85.67 %. It was confirmed increase of PAE of an average of 8 % than the fixed bias from the low input power level of 0 dBm ~ 6 dBm.

Three-Level SEPIC with Improved Efficiency and Balanced Capacitor Voltages

  • Choi, Woo-Young;Lee, Seung-Jae
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.447-454
    • /
    • 2016
  • A single-ended primary-inductor converter (SEPIC) features low input current ripple and output voltage up/down capability. However, the switching devices in a two-level SEPIC suffer from high voltage stresses and switching losses. To cope with this drawback, this study proposes a three-level SEPIC that uses a low voltage-rated switch and thus achieves better switching performance compared with the two-level SEPIC. The three-level SEPIC can reduce switch voltage stresses and switching losses. The converter operation and control method are described in this work. The experimental results for a 500 W prototype converter are also discussed. Experimental results show that unlike the two-level SEPIC, the three-level SEPIC achieves improved power efficiency with balanced capacitor voltages.

A Study on Optimization of LO Power for Improving Linearity in MMIC Double Balanced Mixer (MMIC 이중평형 주파수 혼합기의 선형성 개선을 위한 LO Power 최적화 연구)

  • Kim, Tae-Young;Lee, Min-Jae;Lee, Jong-Chul
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.4
    • /
    • pp.143-152
    • /
    • 2016
  • In this paper, a MMIC double balanced mixer that can be applied to the tele-communication band is designed and LO power optimization for the mixer is discussed. The chip of the MMIC double-balanced mixer is fabricated on GaAs substrate with the size of $4{\times}4mm^2$. Optimization study of LO power for the MMIC double-balanced mixer proposed in this paper is conducted for the Input IP3 (IIP3) regarding on the linearity of the input signal. When LO power level of+16 dBm is applied to the mixer, IIP3 is obtained to be approximately 23.2 dBm, which is the most outstanding characteristic.

High Efficiency Strategy of High Input Voltage SMPS (고전압 입력용 SMPS의 고효율 전략)

  • Woo, Dong-Young;Park, Seong-Mi;Park, Sung-Jun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.3
    • /
    • pp.365-371
    • /
    • 2019
  • Recently, the demonstration and research on the power transmission using high voltage DC such as HVDC(High Voltage DC), Smart Grid, DC transmission and distribution have been actively conducted. In order to control the power converter in high-voltage DC power transmission system, SMPS(Switching Modulation Power Supply) for power converter control using high-voltage DC input is essential. However, the demand for high-pressure SMPS is still low, so the development is not enough. In the low-output SMPS using the high-voltage input, it is difficult to achieve high efficiency due to the switching transient loss especially at light load. In this paper, we propose a new switching scheme for high power SMPS control for low output power. The proposed method can provide better efficiency increase effect in the light load region compared to the existing PWM method. To verify the feasibility of the proposed method, a 40 W SMPS for HVDC MMC(Modulation Multi-level Converter) was designed and verified by simulation.