• Title/Summary/Keyword: Input power level

Search Result 586, Processing Time 0.034 seconds

A Study on the Development of Level Sensor using Frequency Modulated Continuous Wave (주파수 변조 연속파를 이용한 레벨 센서 개발에 관한 연구)

  • 박동국;한태경;박인용;윤천수
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.04a
    • /
    • pp.299-303
    • /
    • 2004
  • In this paper, it is presented a level sensor for measuring a level of the contents of cargo tank using frequency modulated continuous wave(FMCW). The frequency range is 10∼11 GHz, the radar cross section(RCS) of target is 0.8 ㎡ of metal plate. the experiment is performed in laboratory and open ground, the sweep time of the signal is 100 ms, the pyramidal horn antenna of about 20 dBi gain is used, and input power of antenna is about 5 dBm. the beat frequency according to the target moving to 40 m is measured. There is a good agreement between measured and calculated results. But the resolution of the FMCW radar is measured about 10 cm due to nonlinear of voltage controlled oscillator(VCO).

  • PDF

Optimized Sigma-Delta Modulation Methodology for an Effective FM Waveform Generation in the Ultrasound System (효율적인 주파수 변조된 초음파 파형 발생을 위한 최적화된 시그마 델타 변조 기법)

  • Kim, Hak-Hyun;Han, Ho-San;Song, Tai-Kyong
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.3
    • /
    • pp.429-440
    • /
    • 2007
  • A coded excitation has been studied to improve the performance for ultrasound imaging in term of SNR, imaging frame rate, contrast to tissue ratio, and so forth. However, it requires a complicated arbitrary waveform transmitter for each active channel that is typically composed of a multi-bit Digital-to-Analog Converter (DAC) and a linear power amplifier (LPA). Not only does the LPA increase the cost and size of a transmitter block, but it consumes much power, increasing the system complexity further and causing a heating-up problem. This paper proposes an optimized 1.5bit fourth order sigma-delta modulation technique applicable to design an efficient arbitrary waveform generator with greatly reduced power dissipation and hardware. The proposed SDM can provide a required SQNR with a low over-sampling ratio of 4. To this end, the loop coefficients are optimized to minimize the quantization noise power in signal band while maintaining system stability. In addition, the decision level for the 1.5 bit quantizer is optimized for a given input waveform, which results in the SQNR improvement of more than 5dB. Computer simulation results show that the SQNR of a FM(frequency modulated) signal generated by using the proposed method is about 26dB, and the peak side-lobe level (PSL) of its compressed waveform on receive is -48dB.

An analysis on the effects of higher power rates on supply price and power savings for Korean manufacturing sector (산업 전력요금 인상의 공급가격 및 전력수요 절감 효과 분석:국내 제조업 부문을 대상으로)

  • Lee, Myunghun
    • Environmental and Resource Economics Review
    • /
    • v.23 no.1
    • /
    • pp.43-65
    • /
    • 2014
  • In this paper, we test for allocative efficiency of productive inputs including electricity and measure the divergence between the actual and optimal level of electricity for the chemical products, which is a relatively highly electricity-intensive sector in Korean manufacturing industries, by estimating a shadow cost function. Supposing cost minimization subject to market prices was achieved, we derive the price elasticities of demand for each input and simulate the impact of a 10% increase in power rate on its demand and supply price by estimating jointly a cost function with an inverse supply relation. The null hypothesis of allocative efficiency of inputs is rejected over the period 1982-2006. On average, electricity is used more than optimal level by 98% per year. The demand for electricity decreases by 11.4%, and supply price, on average, falls by 0.08%, other things being equal.

Prediction Intervals for Day-Ahead Photovoltaic Power Forecasts with Non-Parametric and Parametric Distributions

  • Fonseca, Joao Gari da Silva Junior;Ohtake, Hideaki;Oozeki, Takashi;Ogimoto, Kazuhiko
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1504-1514
    • /
    • 2018
  • The objective of this study is to compare the suitability of a non-parametric and 3 parametric distributions in the characterization of prediction intervals of photovoltaic power forecasts with high confidence levels. The prediction intervals of the forecasts are calculated using a method based on recent past data similar to the target forecast input data, and on a distribution assumption for the forecast error. To compare the suitability of the distributions, prediction intervals were calculated using the proposed method and each of the 4 distributions. The calculations were done for one year of day-ahead forecasts of hourly power generation of 432 PV systems. The systems have different sizes and specifications, and are installed in different locations in Japan. The results show that, in general, the non-parametric distribution assumption for the forecast error yielded the best prediction intervals. For example, with a confidence level of 85% the use of the non-parametric distribution assumption yielded a median annual forecast error coverage of 86.9%. This result was close to the one obtained with the Laplacian distribution assumption (87.8% of coverage for the same confidence level). Contrasting with that, using a Gaussian and Hyperbolic distributions yielded median annual forecast error coverage of 89.5% and 90.5%.

Design of 20 W Class-E Amplifier Including Protection for Wireless Power Transmission at ISM 13.56 MHz (보호 회로를 포함한 무선 전력 전송용 ISM 13.56 MHz 20 W Class-E 앰프 설계)

  • Nam, Min-Young;Kim, Young-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.6
    • /
    • pp.613-622
    • /
    • 2013
  • In this paper, an inductive clamping class-E power amplifier has been tested for wireless power transmission at ISM band, 13.56 MHz. The implemented power amplifier is designed to operate stably without destroying power transistor in wireless power transmission system which basically keeps not to align between a transmitting antenna and a receiving antenna. The power amplifier is also designed to enhance harmonic filtering characteristic. The amplifier was tested with a DC supply voltage of 28 V and input power of 25 dBm at 13.56 MHz. The test results show the output power level of 43 dBm, the difference power level between fundamental frequency and second harmonic frequency of more than 55 dBc, the dc current consumption of 830 mA, and the high power-added efficiency of 85 %. Finally, the implemented power amplifier operated normally with 830 mA DC current consumption from 28 V source when the two antennas were aligned, and the power transmission was successful. But when the two antennas were not aligned, its DC current consumption automatically decreased down to 420 mA to protect the switching transistor.

A Novel 11-Level PWM Inverter for Improving Output Voltage Waveform (출력 전압 파형 개선을 위한 새로운 11 레벨 PWM 인버터)

  • 강필순;박성준;김철우
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.2
    • /
    • pp.99-106
    • /
    • 2003
  • This paper presents a novel multilevel PWM inverter employing series-connected transformers in order to improve the waveshape of output voltage and to reduce its harmonics. The proposed 11-level inverter consists of three full-bridge inverter modules and their corresponding transformers. Among their inverter modules, one is used as PWM operation and the others as level generation. From a suitable selection of turns ratio of transformer, continuous output voltage levels were generated appearing an integral ratio to input DC source. Because of their series connection of transformers, output filter inductor is not necessary. The operational principles and analysis are explained, and it is compared with a conventional multilevel PWM inverter. The validity of the proposed system Is verified through the experimental results using a prototype.

Efficiency Improvement of Power Amplifier Using a Digitally-Controlled Dynamic Bias Switching for LTE Base Station (Digitally-Controlled Dynamic Bias Switching을 이용한 LTE 기지국용 전력증폭기의 효율 개선)

  • Seo, Mincheol;Lee, Sung Jun;Park, Bonghyuk;Yang, Youngoo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.8
    • /
    • pp.795-801
    • /
    • 2014
  • This paper presents an efficiency enhancement for the high power amplifier using DDBS(Digitally-controlled Dynamic Bias Switching) method which dynamically provides the power amplifier with two bias voltage levels according to the input envelope signal. It is quite easy to adjust the control signal by using a digital processing. The fabricated DDBS PA was evaluated using an 64 QAM FDD LTE signal, which has a center frequency of 2.6 GHz, a bandwidth of 10 MHz and a PAPR of 9.5 dB. The DDBS increases the power amplifier's PAE(Power-Added Efficiency) from 40.9 % to 48 %, at an average output power level of 43 dBm.

Experimental Analysis of a Supersonic Plasma Wind Tunnel Using a Segmented Arc Heater with the Power Level of 0.4 MW (0.4 MW 급 분절형 아크 히터를 이용한 초음속 플라즈마 풍동 특성 실험)

  • Kim, Min-Ho;Lee, Mi-Yeon;Kim, Jeong-Soo;Choi, Chea-Hong;Seo, Jun-Ho;Moon, Se-Yeon;Hong, Bong-Guen
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.9
    • /
    • pp.700-707
    • /
    • 2013
  • Experimental analyses on a supersonic plasma wind tunnel of CBNU (Chonbuk National University) were carried out. In these experiments, a segmented arc heater was employed as a plasma source and operated at the gas flow rates of 16.3 g/s and the total currents of 300 A. The input power reached ~350 kW with the torch efficiency of 51.4 %, which is defined as the ratio of total exit enthalpy to the input power. The pressure of plasma gas in the arc heater was measured up to 4 bar while it was down to ~45 mbar in a vacuum chamber through a Laval nozzle. During this conversion process, the generated supersonic plasma was expected to have a total enthalpy of ~11 MJ/kg from the measured input power and torch efficiency. In addition to the measurement of total enthalpy, a cone type probe was inserted into the supersonic plasma flow in order to estimate the angle between shock layer and surface of the probe. From these measurements, the temperature and the Mach number of the supersonic plasma were predicted as ~2,950 K and ~3.7, respectively.

Fuzzy Algorithms to Generate Level Controllers for Nuclear Power Plant Steam Generators (원전 증기 발생기 수위제어용 퍼지 알고리즘)

  • Moon, Byung-Soo;Park, Jae-Chang;Kim, Dong-Hwa;Kim, Byung-Koo
    • Nuclear Engineering and Technology
    • /
    • v.25 no.2
    • /
    • pp.222-232
    • /
    • 1993
  • In this paper, we present two sets of fuzzy algorithms for the steam generator level control ; one for the high power operations where the flow error is available and the other for the low power operations where the flow error is not available. These are converted to a PID type controller for the high power case and to a quadratic function form of a controller for the low power case. These controllers are implemented on the Compact Nuclear Simulator at Korea Atomic Energy Research Institute and tested by a set of four simulation experiments for each. For both cases, the results show that the total variation of the level error and of the flow error are about 50% of those by the PI controllers with about one half of the control action. For the high power case, this is mainly due to the fact that a combination of two PD type controllers in the velocity algorithm form rather than a combination of two PI type controllers in the position algorithm form is used. For the low power case, the controller is essentially a PID type with a very small integral component where the average values for the derivative component input and for the controller output are used.

  • PDF

0.18mm CMOS LNA/Mixer for UHF RFID Reader (UHF RFID 리더를 위한 0.18mm CMOS LNA/Mixer)

  • Woo, Jung-Hoon;Kim, Young-Sik
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.2
    • /
    • pp.45-49
    • /
    • 2009
  • In this paper, a direct down conversion LNA/Mixer has been designed and tested for 900Mhz UHF RFID application. The designed circuit has been implemented in 0.18um CMOS technology with 3.3V operation. In this work, a common gate input architecture has been used to cope with the higher input self jamming level. This LNA/Mixer is designed to support two operating modes of high gain mode and low gain mode according to the input jamming levels. The measured results show that the input referred P1dBs are 4dBm of high gain mode and 11dBm of low gain mode, and the conversion gains are 12dB and 3dB in high and low gain mode respectively The power consumptions are 60mW for high gain mode and 79mW for low gain mode. The noise figures are 16dB and 20dB in high gain mode and low gain mode respectively.