• 제목/요약/키워드: Input information

검색결과 10,171건 처리시간 0.041초

다양한 위협 하에서 복수 무인기의 경로점 계획을 위한 계층적 입자 군집 최적화 (Hierarchical Particle Swarm Optimization for Multi UAV Waypoints Planning Under Various Threats)

  • 정원모;김명건;이산하;이상필;박춘신;손흥선
    • 한국항공우주학회지
    • /
    • 제50권6호
    • /
    • pp.385-391
    • /
    • 2022
  • 본 논문에서는 경사 하강법 기반의 경로 생성(GBPP)과 입자 군집 최적화(PSO)를 결합하여 3차원 공간에서 금지구역, 지형정보, 고정익 특성 등을 고려한 경로 생성 알고리즘을 제안한다. 기존의 GBPP 방법의 경우 빠르게 경로 생성이 가능하지만 초기 경로에 따라 지역적 최적 값에 빠져 안전하지 않은 경로가 생성될 수 있다. 유전 알고리즘(GA)과 PSO 등 생물학에서 영감을 받은 군집 지능 알고리즘들의 경우 다양한 경로들을 샘플링하여 지역적 최적 값 문제를 해결할 수 있다. 다만 무인기와 경로점 개수가 증가하여 최적 변수가 증가할 경우 군집 개수를 늘려야 하고 계산 시간이 크게 증가한다. 두 알고리즘 단점을 보완하고자 본 연구에서는 GBPP 입력 값인 초기경로를 수평, 수직 방향에 대한 변위 두 가지 변수로 정의하고 이를 PSO 변수로 정의하여 계층적 경로 최적화 알고리즘 HPSO를 제안한다. 제안한 알고리즘은 통용되는 비행 제어 컴퓨터(FCC)의 software-in-the-loop simulation(SILS)을 사용하여 고정익 무인기에 대한 사용 가능성을 검증하였다.

BERT-Fused Transformer 모델에 기반한 한국어 형태소 분석 기법 (Korean Morphological Analysis Method Based on BERT-Fused Transformer Model)

  • 이창재;나동열
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제11권4호
    • /
    • pp.169-178
    • /
    • 2022
  • 형태소는 더 이상 분리하면 본래의 의미를 잃어버리는 말의 최소 단위이다. 한국어에서 문장은 공백으로 구분되는 어절(단어)의 조합이다. 형태소 분석은 어절 단위의 문장을 입력 받아서 문맥 정보를 활용하여 형태소 단위로 나누고 각 형태소에 적절한 품사 기호를 부착한 결과를 생성하는 것이다. 한국어 자연어 처리에서 형태소 분석은 가장 핵심적인 태스크다. 형태소 분석의 성능 향상은 한국어 자연어 처리 태스크의 성능 향상에 직결된다. 최근 형태소 분석은 주로 기계 번역 관점에서 연구가 진행되고 있다. 기계 번역은 신경망 모델 등으로 어느 한 도메인의 시퀀스(문장)를 다른 도메인의 시퀀스(문장)로 바꾸는 것이다. 형태소 분석을 기계 번역 관점에서 보면 어절 도메인에 속하는 입력 시퀀스를 형태소 도메인 시퀀스로 변환하는 것이다. 본 논문은 한국어 형태소 분석을 위한 딥러닝 모델을 제안한다. 본 연구에서 사용하는 모델은 기계 번역에서 높은 성능을 기록한 BERT-fused 모델을 기반으로 한다. BERT-fused 모델은 기계 번역에서 대표적인 Transformer 모델과 자연어 처리 분야에 획기적인 성능 향상을 이룬 언어모델인 BERT를 활용한다. 실험 결과 형태소 단위 F1-Score 98.24의 성능을 얻을 수 있었다.

웹기반 정간보 사보 프로그램 설계 (Designing a Web-Based Jeongganbo Notation Program)

  • 심인섭
    • 한국콘텐츠학회논문지
    • /
    • 제22권4호
    • /
    • pp.742-753
    • /
    • 2022
  • 최근 문화의 세계화와 K-컬처의 세계적인 유행은 한국의 전통문화를 더욱 발전시키고 알릴 수 있는 좋은 배경이 되고 있다. 그러나 한국의 전통음악에는 세종대왕이 개발한 정간보라는 우수한 기보법을 가지고 있음에도 불구하고 서양 기보법의 보편성으로 점차 사용되지 않고 있는 추세이다. 하지만 7차 교육과정 이후 초등 음악교육에서 정간보의 소개와 활용 비중이 늘어나고 있고, 이는 우리의 고유한 전통 기보법을 다시금 보편화 할 수 있는 좋은 기회가 되고 있다. 반면 기보법의 해석에 관한 연습 이외에 정간보 사보의 실습을 활성화하기 위해서는 더욱 다양한 도구가 필요할 것으로 보인다. 이에 본 연구는 설치나 다운로드가 없이 웹에서 정간보를 사보할 수 있는 웹 프로그램에 대한 설계를 연구하였다. 또한 정간보를 사보하는 과정에 사용자의 편의성을 증대하기 위해 자판을 건반처럼 활용하여 입력하는 방안과 입력된 음악 정보를 MIDI 기능을 통해 청취하고 파일로 저장할 수 있는 방법에 대해 설계하고 제안한다. 본 연구를 통해 누구나 쉽고 간단히 접근하여 실습하고 사보할 수 있는 웹 프로그램을 개발할 수 있으며, 이는 향후 국악의 기보 실습 혹은 전통음악 사보에 유용한 도구가 될 것으로 기대된다.

위성 영상을 위한 경량화된 CNN 기반의 보간 기술 연구 (A Study on Lightweight CNN-based Interpolation Method for Satellite Images)

  • 김현호;서두천;정재헌;김용우
    • 대한원격탐사학회지
    • /
    • 제38권2호
    • /
    • pp.167-177
    • /
    • 2022
  • 위성 영상 촬영 후 지상국에 전송된 영상을 이용하여 최종 위성 영상을 획득하기 위해 많은 영상 전/후 처리 과정이 수반된다. 전/후처리 과정 중 레벨 1R 영상에서 레벨 1G 영상으로 변환 시 기하 보정은 필수적으로 요구된다. 기하 보정 알고리즘에서는 보간 기법을 필연적으로 사용하게 되며, 보간 기법의 정확도에 따라서 레벨 1G 영상의 품질이 결정된다. 또한, 레벨 프로세서에서 수행되는 보간 알고리즘의 고속화 역시 매우 중요하다. 본 논문에서는 레벨 1R에서 레벨 1G로 변환 시 기하 보정에 필요한 경량화된 심층 컨볼루션 신경망 기반 보간 기법에 대해 제안하였다. 제안한 기법은 위성 영상의 해상도를 2배 향상하며, 빠른 처리 속도를 위해 경량화된 심층 컨볼루션 신경망으로 딥러닝 네트워크를 구성하였다. 또한, panchromatic (PAN) 밴드 정보를 활용하여 multispectral (MS) 밴드의 영상 품질 개선이 가능한 피처 맵 융합 방법을 제안하였다. 제안된 보간 기술을 통해 획득한 영상은 기존의 딥러닝 기반 보간 기법에 비해 정량적인 peak signal-to-noise ratio (PSNR) 지표에서 PAN 영상은 약 0.4 dB, MS 영상은 약 4.9 dB 개선된 결과를 보여주었으며, PAN 영상 크기 기준 36,500×36,500 입력 영상의 해상도를 2배 향상된 영상 획득 시 기존 딥러닝 기반 보간 기법 대비 처리 속도가 약 1.6배 향상됨을 확인하였다.

네트워크 환경에서의 몰입형 상호작용을 위한 딥러닝 기반 그룹 동기화 기법 (Deep Learning Based Group Synchronization for Networked Immersive Interactions)

  • 이중재
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제11권10호
    • /
    • pp.373-380
    • /
    • 2022
  • 본 논문에서는 네트워크 환경에서 원격사용자들의 몰입형 상호작용을 위한 딥러닝 기반의 그룹 동기화 기법을 제안한다. 그룹 동기화의 목적은 사용자의 몰입감을 높이기 위해서 모든 참여자가 동시에 상호작용이 가능하게 하는 것이다. 기존 방법은 시간 정확도를 향상을 위해 대부분 NTP(Network Time Protocol) 기반의 시간 동기화 방식에 초점이 맞추어져 있다. 동기화 서버에서는 미디어 재생 시간을 제어하기 위해 이동 평균 필터를 사용한다. 그 한 예로서, 지수 가중평균 방법은 입력 데이터의 변화가 크지 않으면 정확하게 재생 시간을 추종하고 예측하나 네트워크, 코덱, 시스템 상태의 급격한 변화가 있을 때는 안정화를 위해 더 많이 시간이 필요하다. 이런 문제점을 개선하기 위해서 데이터의 특성을 반영할 수 있는 딥러닝 기반의 그룹 동기화 기법인 DeepGroupSync를 제안한다. 제안한 딥러닝 모델은 시계열의 재생 지연 시간을 이용하여 최적의 재생 시간을 예측하는 두 개의 GRU(gated recurrent unit) 계층과 하나의 완전 연결 계층으로 구성된다. 실험에서는 기존의 지수 가중평균 기반 방법과 제안한 DeepGroupSync 방법에 대한 성능을 평가한다. 실험 결과로부터 예상하지 못한 급격한 네트워크 조건 변화에 대해서 제안한 방법이 기존 방법보다 더 강건함을 볼 수 있다.

GEMS 영상과 기계학습을 이용한 산불 연기 탐지 (Detection of Wildfire Smoke Plumes Using GEMS Images and Machine Learning)

  • 정예민;김서연;김승연;유정아;이동원;이양원
    • 대한원격탐사학회지
    • /
    • 제38권5_3호
    • /
    • pp.967-977
    • /
    • 2022
  • 산불의 발생과 강도는 기후 변화로 인하여 증가하고 있다. 산불 연기에 의한 배출가스 대기질과 온실 효과에 영향을 미치는 주요 원인 중 하나로 인식되고 있다. 산불 연기의 효과적인 탐지를 위해서는 위성 산출물과 기계학습의 활용이 필수적이다. 현재까지 산불 연기 탐지에 대한 연구는 구름 식별의 어려움 및 모호한 경계 기준 등으로 인한 어려움이 존재하였다. 본 연구는 우리나라 환경위성 센서인 Geostationary Environment Monitoring Spectrometer (GEMS)의 Level 1, Level 2 자료와 기계학습을 이용한 산불 연기 탐지를 목적으로 한다. 2022년 3월 강원도 산불을 사례로 선정하여 산불 연기 레이블 영상을 생성하고, 랜덤 포레스트 모델에 GEMS Level 1 및 Level 2 자료를 투입하여 연기 픽셀 분류 모델링을 수행하였다. 훈련된 모델에서 입력변수의 중요도는 Aerosol Optical Depth (AOD), 380 nm 및 340 nm의 복사휘도 차, Ultra-Violet Aerosol Index (UVAI), Visible Aerosol Index (VisAI), Single Scattering Albedo (SSA), 포름알데히드, 이산화질소, 380 nm 복사휘도, 340 nm 복사휘도의 순서로 나타났다. 또한 2,704개 픽셀에 대한 산불 연기 확률(0≤p≤1) 추정에서 Mean Bias Error (MBE)는 -0.002, Mean Absolute Error (MAE)는 0.026, Root Mean Square Error (RMSE)는 0.087, Correlation Coefficient (CC)는 0.981의 정확도를 보였다.

LiDAR용 엣지 컴퓨팅을 활용한 중요시설 경계 시스템 (Important Facility Guard System Using Edge Computing for LiDAR)

  • 조은경;이은석;신병석
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제11권10호
    • /
    • pp.345-352
    • /
    • 2022
  • 최근의 LiDAR(Light Detection And Ranging) 센서는 실시간으로 주변에 있는 물체를 스캔하는 데 사용된다. LiDAR 센서를 이용하여 주변 환경을 스캔할 경우 감지되었던 사물들에 대한 변화를 감지하고 실시간으로 움직이는 물체를 인식할 수 있다. 센서들의 제작 비용이 낮아지면서 LiDAR는 중요시설의 경계, 스마트시티, 자율주행차 등 다양한 산업 분야에서 다양하게 활용되고 있다. 이러한 LiDAR 데이터는 실시간에 사물을 스캔하는 만큼 입력 데이터의 크기가 크다. 따라서 이러한 LiDAR를 활용하는 시스템에서는 이러한 대용량 데이터의 실시간 처리가 병목이 될 수 있어서 이러한 대용량 처리에 대한 대안이 필요하다. 본 논문에서는 엣지 컴퓨팅 서버를 이용하여 방대한 포인트 클라우드를 압축하여 빠르게 처리하는 엣지 컴퓨팅 기법을 제안한다. LiDAR 센서의 레이저의 반사 범위가 제한되어 있으므로 실시간으로 넓은 영역을 스캔하기 위해서는 여러 대의 라이다를 사용해야 한다. 따라서 실시간으로 물체를 감지하거나 인식하기 위해서는 여러 개의 LiDAR 센서에 대한 데이터를 한 번에 처리해야 한다. 에지 컴퓨터는 데이터 가속을 수행하기 위해 포인트 클라우드를 효율적으로 압축하고 모든 데이터를 메인 클라우드에서 실시간에 압축해제하여 사용할 수 있도록 설계되었다. 이를 통해 사용자는 시스템을 중앙에서 병목 없이 실시간에 LiDAR 센서들을 제어할 수 있다. 실험에 사용된 시스템은 이러한 엣지 컴퓨팅 서비스를 적용함으로써 기존 클라우드 기반 방식에서 문제였던 데이터 병목 현상을 효과적으로 해결하였다.

디지털 전환: D.N.A.(Data, Network, AI) 키워드를 활용한 토픽 모델링 (Digital Transformation: Using D.N.A.(Data, Network, AI) Keywords Generalized DMR Analysis)

  • 안세환;고강욱;김영민
    • 지식경영연구
    • /
    • 제23권3호
    • /
    • pp.129-152
    • /
    • 2022
  • 디지털 전환의 핵심 인프라로서 데이터·네트워크·인공지능(D.N.A.) 분야의 확산과 유망 산업의 등장은 경제 전반에 걸쳐 활발한 디지털 혁신의 기반이 되고 있다. 본 연구에서는 텍스트마이닝 방법론을 적용하여 WoS 데이터베이스의 SCIE 급 색인에 해당하는 연구의 초록, 출판연도 및 연구분야를 입력변수로 활용하여 주요 토픽을 도출하였다. 우선, 단어 출현 빈도에 기반한 TF 및 TF-IDF 분석을 통해 주요 키워드를 확인하고, 이어서 g-DMR(Generalized Dirichlet-Multinomial Regression)을 이용하여 토픽 모델링을 수행하였는데, 다양한 형태의 변수를 메타정보로 활용 가능한 해당 토픽 모형의 이점으로 단순하게 토픽을 도출하는 것 이상의 의미를 적절하게 탐색할 수 있었다. 분석 결과에 따르면, 비즈니스 인텔리전스, 제조 생산 시스템, 서비스 가치 창출, 원격 진료, 디지털 교육 등의 토픽들이 디지털 전환에서 주요 연구주제인 것으로 식별되었다. 토픽 모델링의 결과를 요약하자면, 1) COVID-19 이후 비즈니스 인텔리전스를 주제로 하는 연구가 전 영역에서 활발하게 수행되고 있으며, 2) 제조 분야에서 지능형 제조 솔루션 및 메타버스 등의 이슈가 등장함에 따라 제조 생산 시스템에 관한 주제가 다시 한번 주목받고 있음을 확인하였다. 마지막으로, 3) 주제어 자체는 기술과 서비스의 측면에서 분리하여 볼 수 있지만, 다수의 연구에서 해당 기술들을 접목하여 적용된 다양한 서비스를 포괄적으로 다루고 있으므로 이를 별개로 해석하는 것이 바람직하지 못하다는 점을 알 수 있었다.

해기사 직무스트레스 측정 및 관리 모바일 애플리케이션 개발 (Development of Mobile Application for Ship Officers' Job Stress Measurement and Management)

  • 양동복;김주성;김득봉
    • 해양환경안전학회지
    • /
    • 제27권2호
    • /
    • pp.266-274
    • /
    • 2021
  • 해기사의 과도한 직무스트레스는 신체적, 정신적으로 부정적인 영향을 미치며, 이로 인한 이직은 원활한 해기인력 수급에 영향을 미칠 수 있다. 본 연구에서는 해기사의 체계적인 직무스트레스 측정 및 관리를 위한 도구로써 모바일 웹 애플리케이션을 개발하고 품질평가를 통하여 검증하였다. 애플리케이션의 개발은 전통적인 소프트웨어 개발 방식인 Waterfall 모델에 따라 수행되었다. 요구분석 단계에서는 현직 해기사 및 해상직원 인사담당자 각 5명을 대상으로 Brain Storming을 실시하고 그 결과를 설계에 반영하였다. 설계 및 개발 단계에서는 요구사항 분석 결과를 바탕으로 애플리케이션을 설계하고, JSP와 Spring Framework를 활용하여 기능을 구현하였다. 애플리케이션의 작동 Test를 수행한 결과 사용자 인터페이스에서 입력한 직무스트레스, 정신건강, 진로적응성 등 입력 데이터에 따른 정상적인 출력 결과가 도시되었으며, 관리자 인터페이스에도 응답자의 입력 결과가 정상적으로 도시되고, 데이터베이스로 구성됨을 확인하였다. 요구사항 분석 참여 집단을 대상으로 ISO/IEC 9126-2 메트릭 기반의 5점 척도 품질평가를 시행한 결과 사용자 인터페이스 4.70점, 관리자 인터페이스 4.72점으로 유의한 결과가 도출되었다. 본 연구를 통해 개발한 애플리케이션은 사용자 요구를 반영한 지속적인 개정 및 보완이 필요하며, 향후 수집된 Data의 분석 및 활용을 위한 시스템 구축에 관한 연구가 필요하다.

프로세스모델링을 활용한 사회적기업 R&D지원정책의 논리모형 (A Study on the Logical Model of R&D Support Policy for Social Enterprise)

  • 경종수;이보형
    • 한국융합학회논문지
    • /
    • 제12권4호
    • /
    • pp.259-266
    • /
    • 2021
  • 본 연구는 사회적기업의 경쟁력을 강화하는 방안으로 R&D활동 체계화와 지원정책의 논리모형을 제공하는 것이 목적이다. 사회적기업의 R&D수요조사 및 심층면접(FGI)을 토대로 R&D활동을 체계화하여 R&D정책의 논리모형을 도출하고자 한다. 사회적기업의 R&D활동은 일반기업과 비교해 초기단계이거나 체계성이 매우 미흡하다. 프로세스모델링 방법은 사회적기업의 R&D활동 세부요소를 표준화하는 방법으로 R&D지원정책의 논리성 확보에 활용될 수 있다. 연구결과 사회적기업들은 사회가치 증진을 위한 제품과 서비스의 경쟁력확보를 위해 R&D활동의 필요성과 중요성을 인식하고 있으며, R&D경험 및 역량이 부족하기 때문에 R&D전문기관(R&D기획전문기관, 정부출연 연구기관, 대학 등)과 협력을 통한 R&D역량 개선을 기대하고 있다. 사회적기업 R&D활동의 성과지표는 심층면접(FGI)을 통하여 투입-과정-성과지표 단위로 도출하였고, R&D지원정책의 논리모형은 심층면접자료와 기존연구를 참고하여 사업정의, 주요고객, 비전체계, 사업전략, R&D활동요소, 성공요인 등의 영역으로 구분하여 도출하였다.