DOI QR코드

DOI QR Code

Hierarchical Particle Swarm Optimization for Multi UAV Waypoints Planning Under Various Threats

다양한 위협 하에서 복수 무인기의 경로점 계획을 위한 계층적 입자 군집 최적화

  • Received : 2022.01.12
  • Accepted : 2022.04.11
  • Published : 2022.06.01

Abstract

This paper presents to develop a path planning algorithm combining gradient descent-based path planning (GBPP) and particle swarm optimization (PSO) for considering prohibited flight areas, terrain information, and characteristics of fixed-wing unmmaned aerial vehicle (UAV) in 3D space. Path can be generated fast using GBPP, but it is often happened that an unsafe path can be generated by converging to a local minimum depending on the initial path. Bio-inspired swarm intelligence algorithms, such as Genetic algorithm (GA) and PSO, can avoid the local minima problem by sampling several paths. However, if the number of optimal variable increases due to an increase in the number of UAVs and waypoints, it requires heavy computation time and efforts due to increasing the number of particles accordingly. To solve the disadvantages of the two algorithms, hierarchical path planning algorithm associated with hierarchical particle swarm optimization (HPSO) is developed by defining the initial path, which is the input of GBPP, as two variables including particles variables. Feasibility of the proposed algorithm is verified by software-in-the-loop simulation (SILS) of flight control computer (FCC) for UAVs.

본 논문에서는 경사 하강법 기반의 경로 생성(GBPP)과 입자 군집 최적화(PSO)를 결합하여 3차원 공간에서 금지구역, 지형정보, 고정익 특성 등을 고려한 경로 생성 알고리즘을 제안한다. 기존의 GBPP 방법의 경우 빠르게 경로 생성이 가능하지만 초기 경로에 따라 지역적 최적 값에 빠져 안전하지 않은 경로가 생성될 수 있다. 유전 알고리즘(GA)과 PSO 등 생물학에서 영감을 받은 군집 지능 알고리즘들의 경우 다양한 경로들을 샘플링하여 지역적 최적 값 문제를 해결할 수 있다. 다만 무인기와 경로점 개수가 증가하여 최적 변수가 증가할 경우 군집 개수를 늘려야 하고 계산 시간이 크게 증가한다. 두 알고리즘 단점을 보완하고자 본 연구에서는 GBPP 입력 값인 초기경로를 수평, 수직 방향에 대한 변위 두 가지 변수로 정의하고 이를 PSO 변수로 정의하여 계층적 경로 최적화 알고리즘 HPSO를 제안한다. 제안한 알고리즘은 통용되는 비행 제어 컴퓨터(FCC)의 software-in-the-loop simulation(SILS)을 사용하여 고정익 무인기에 대한 사용 가능성을 검증하였다.

Keywords

Acknowledgement

본 연구는 LIG넥스원이 수행하고 있는 "소형드론용 데이터링크 및 지상 통제 SW 표준화 기술" 과제의 일환으로 수행되었습니다. (UC190053ID)

References

  1. Wang, G., Sun, X., Zhang, L. and Lv, C., "Saturation attack based route planning and threat avoidance algorithm for cruise missiles," Journal of Systems Engineering and Electronics, Vol. 22, No. 6, 2011, pp. 948~953. https://doi.org/10.3969/j.issn.1004-4132.2011.06.011
  2. Zhao, J. and Zhou, R., "Obstacle avoidance for multi-missile network via distributed coordination algorithm," Chinese Journal of Aeronautics, Vol. 29, No. 2, 2016, pp. 441~447. https://doi.org/10.1016/j.cja.2016.01.011
  3. Kumar, S. R., Weiss, M. and Shima, T., "Minimum-effort intercept angle guidance with multiple-obstacle avoidance," Journal of Guidance, Control, and Dynamics, Vol. 41, No. 6, 2018, pp. 1355~1369 https://doi.org/10.2514/1.G003223
  4. Park, S., Hong, J. H., Ha, H. J., Ryoo, C. K. and Shin, W., "Determination of Waypoints to Maximize the Survivability of UAV against Anti-air Threats," Journal of the Korean Society for Aeronautical & Space Sciences, Vol. 42, No. 2, 2014, pp. 127~133. https://doi.org/10.5139/JKSAS.2014.42.2.127
  5. Jeong, S., Jang, D. S., Park, H., Seong, T. and Ahn, J., "Optimal path planning and analysis for the maximization of multi UAVs survivability for missions involving multiple threats and locations," Journal of the Korean Society for Aeronautical and Space Sciences, Vol. 43, No. 6, 2015 pp. 488~496. https://doi.org/10.5139/JKSAS.2015.43.6.488
  6. Lin, Z., Castano, L., Mortimer, E. and Xu, H., "Fast 3D Collision Avoidance Algorithm for Fixed Wing UAS," Journal of Intelligent & Robotic Systems, Vol. 97, 2020, pp. 577~604. https://doi.org/10.1007/s10846-019-01037-7
  7. Huang, J., Sun, W. and Gao, Y., "A Method of Trajectory Planning for Unmanned Aerial Vehicle Formation Based on Fluid Dynamic Model," IEEE Access, Vol. 8, 2020, pp. 2824~2834. https://doi.org/10.1109/access.2019.2961632
  8. Wang, G., Chu, H. E. and Mirjalili, S., "Three-dimensional path planning for UCAV using an improved bat algorithm," Aerospace Science and Technology, Vol. 49, 2016, pp. 231~238. https://doi.org/10.1016/j.ast.2015.11.040
  9. Shao, S., He, C., Zhao, Y. and Wu, X., "Efficient Trajectory Planning for UAVs Using Hierarchical Optimization," IEEE Access, Vol. 9, 2021, pp. 60668~60681. https://doi.org/10.1109/ACCESS.2021.3073420
  10. Duan, H., Zhao, J., Deng, Y., Shi, Y. and Ding, X., "Dynamic Discrete Pigeon-Inspired Optimization for Multi-UAV Cooperative Search-Attack Mission Planning," IEEE Transactions on Aerospace and Electronic Systems, Vol. 57, No. 1, 2020, pp. 706~720.
  11. Xiong, C., Xin, B., Guo, M., Ding, Y. and Zhang, H., "Multi-UAV 3D Path Planning in Simultaneous Attack," Proceeding of 2020 IEEE 16th International Conference on Control & Automation (ICCA), October 2020, pp. 500~505.
  12. Liu, H., Chen, Q., Pan, N., Sun, Y. and Yang, Y., "Three-Dimensional Mountain Complex Terrain and Heterogeneous Multi-UAV Cooperative Combat Mission Planning," IEEE Access, Vol. 8, 2020, pp. 197407~197419. https://doi.org/10.1109/access.2020.3033408
  13. Liu, Y., Zhang, X., Zhang, Y. and Guan, X., "Collision free 4D path planning for multiple UAVs based on spatial refined voting mechanism and PSO approach," Chinese Journal of Aeronautics, Vol. 32, No. 6, 2019, pp. 1504~1519. https://doi.org/10.1016/j.cja.2019.03.026
  14. Wang, D., Dapei, T. and Lei, L., "Particle swarm optimization algorithm: an overview," Soft Computing, Vol. 22, No. 2, 2018, pp. 387~408. https://doi.org/10.1007/s00500-016-2474-6