• Title/Summary/Keyword: Input data decision

Search Result 442, Processing Time 0.03 seconds

A development of input and output interfaces for fuzzy hierarchical analysis

  • Kwack, H.Y.;Lee, S.D.;Son, I.M.
    • Proceedings of the ESK Conference
    • /
    • 1996.10a
    • /
    • pp.181-184
    • /
    • 1996
  • Fuzzy hierarchical analysis(FHA) has the usefulness to allow decision maker's ambiguities when comparing two alternatives. But, for easiuly appling it to a decision problem, the handling its many data and for decision makers much not knowing fuzzy theory are the obstacles to must be overcomed even if the results of final fuzzy weights can be computed by a personal computer. This paper decribes that FHA is revised, and input/output interfaces are developed to collect input data easily and interprete the fuzzy resultlts. Finally, a fuzzy decision process is suggested with them.

  • PDF

BEYOND LINEAR PROGRAMMING

  • Smith, Palmer W.;Phillips, J. Donal;Lucas, William H.
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.3 no.1
    • /
    • pp.81-91
    • /
    • 1978
  • Decision models are an attempt to reduce uncertainty in the decision making process. The models describe the relationships of variables and given proper input data generate solutions to managerial problems. These solutions may not be answers to the problems for one of two reasons. First, the data input into the model may not be consistant with the underlying assumptions of the model being used. Frequently parameters are assumed to be deterministic when in fact they are probabilistic in nature. The second failure is that often the decision maker recognizes that the data available are not appropriate for the model being used and begins to collect the required data. By the time these data has been compiled the solution is no longer an answer to the problem. This relates to the timeliness of decision making. The authors point out throught the use of an illustrative problem that stocastic models are well developed and that they do not suffer from any lack of mathematical exactiness. The primary problem is that generally accepted procedures for data generation are historical in nature and not relevant for probabilistic decision models. The authors advocate that management information system designers and accountants must become more familiar with these decision models and the input data required for their effective implementation. This will provide these professionals with the background necessary to generate data in a form that makes it relevant and timely for the decision making process.

  • PDF

Decision Tree-Based Feature-Selective Neural Network Model: Case of House Price Estimation (의사결정나무를 활용한 신경망 모형의 입력특성 선택: 주택가격 추정 사례)

  • Yoon Han-Seong
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.19 no.1
    • /
    • pp.109-118
    • /
    • 2023
  • Data-based analysis methods have become used more for estimating or predicting housing prices, and neural network models and decision trees in the field of big data are also widely used more and more. Neural network models are often evaluated to be superior to existing statistical models in terms of estimation or prediction accuracy. However, there is ambiguity in determining the input feature of the input layer of the neural network model, that is, the type and number of input features, and decision trees are sometimes used to overcome these disadvantages. In this paper, we evaluate the existing methods of using decision trees and propose the method of using decision trees to prioritize input feature selection in neural network models. This can be a complementary or combined analysis method of the neural network model and decision tree, and the validity was confirmed by applying the proposed method to house price estimation. Through several comparisons, it has been summarized that the selection of appropriate input characteristics according to priority can increase the estimation power of the model.

Federated Architecture of Multiple Neural Networks : A Case Study on the Configuration Design of Midship Structure (다중 인공 신경망의 Federated Architecture와 그 응용-선박 중앙단면 형상 설계를 중심으로)

  • 이경호;연윤석
    • Korean Journal of Computational Design and Engineering
    • /
    • v.2 no.2
    • /
    • pp.77-84
    • /
    • 1997
  • This paper is concerning the development of multiple neural networks system of problem domains where the complete input space can be decomposed into several different regions, and these are known prior to training neural networks. We will adopt oblique decision tree to represent the divided input space and sel ect an appropriate subnetworks, each of which is trained over a different region of input space. The overall architecture of multiple neural networks system, called the federated architecture, consists of a facilitator, normal subnetworks, and tile networks. The role of a facilitator is to choose the subnetwork that is suitable for the given input data using information obtained from decision tree. However, if input data is close enough to the boundaries of regions, there is a large possibility of selecting the invalid subnetwork due to the incorrect prediction of decision tree. When such a situation is encountered, the facilitator selects a tile network that is trained closely to the boundaries of partitioned input space, instead of a normal subnetwork. In this way, it is possible to reduce the large error of neural networks at zones close to borders of regions. The validation of our approach is examined and verified by applying the federated neural networks system to the configuration design of a midship structure.

  • PDF

A study on decision tree creation using marginally conditional variables (주변조건부 변수를 이용한 의사결정나무모형 생성에 관한 연구)

  • Cho, Kwang-Hyun;Park, Hee-Chang
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.2
    • /
    • pp.299-307
    • /
    • 2012
  • Data mining is a method of searching for an interesting relationship among items in a given database. The decision tree is a typical algorithm of data mining. The decision tree is the method that classifies or predicts a group as some subgroups. In general, when researchers create a decision tree model, the generated model can be complicated by the standard of model creation and the number of input variables. In particular, if the decision trees have a large number of input variables in a model, the generated models can be complex and difficult to analyze model. When creating the decision tree model, if there are marginally conditional variables (intervening variables, external variables) in the input variables, it is not directly relevant. In this study, we suggest the method of creating a decision tree using marginally conditional variables and apply to actual data to search for efficiency.

A study on decision tree creation using intervening variable (매개 변수를 이용한 의사결정나무 생성에 관한 연구)

  • Cho, Kwang-Hyun;Park, Hee-Chang
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.4
    • /
    • pp.671-678
    • /
    • 2011
  • Data mining searches for interesting relationships among items in a given database. The methods of data mining are decision tree, association rules, clustering, neural network and so on. The decision tree approach is most useful in classification problems and to divide the search space into rectangular regions. Decision tree algorithms are used extensively for data mining in many domains such as retail target marketing, customer classification, etc. When create decision tree model, complicated model by standard of model creation and number of input variable is produced. Specially, there is difficulty in model creation and analysis in case of there are a lot of numbers of input variable. In this study, we study on decision tree using intervening variable. We apply to actuality data to suggest method that remove unnecessary input variable for created model and search the efficiency.

Integrity Assessment for Reinforced Concrete Structures Using Fuzzy Decision Making (퍼지의사결정을 이용한 RC구조물의 건전성평가)

  • 박철수;손용우;이증빈
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.274-283
    • /
    • 2002
  • This paper presents an efficient models for reinforeced concrete structures using CART-ANFIS(classification and regression tree-adaptive neuro fuzzy inference system). a fuzzy decision tree parttitions the input space of a data set into mutually exclusive regions, each of which is assigned a label, a value, or an action to characterize its data points. Fuzzy decision trees used for classification problems are often called fuzzy classification trees, and each terminal node contains a label that indicates the predicted class of a given feature vector. In the same vein, decision trees used for regression problems are often called fuzzy regression trees, and the terminal node labels may be constants or equations that specify the Predicted output value of a given input vector. Note that CART can select relevant inputs and do tree partitioning of the input space, while ANFIS refines the regression and makes it everywhere continuous and smooth. Thus it can be seen that CART and ANFIS are complementary and their combination constitutes a solid approach to fuzzy modeling.

  • PDF

Comparison of Data Mining Classification Algorithms for Categorical Feature Variables (범주형 자료에 대한 데이터 마이닝 분류기법 성능 비교)

  • Sohn, So-Young;Shin, Hyung-Won
    • IE interfaces
    • /
    • v.12 no.4
    • /
    • pp.551-556
    • /
    • 1999
  • In this paper, we compare the performance of three data mining classification algorithms(neural network, decision tree, logistic regression) in consideration of various characteristics of categorical input and output data. $2^{4-1}$. 3 fractional factorial design is used to simulate the comparison situation where factors used are (1) the categorical ratio of input variables, (2) the complexity of functional relationship between the output and input variables, (3) the size of randomness in the relationship, (4) the categorical ratio of an output variable, and (5) the classification algorithm. Experimental study results indicate the following: decision tree performs better than the others when the relationship between output and input variables is simple while logistic regression is better when the other way is around; and neural network appears a better choice than the others when the randomness in the relationship is relatively large. We also use Taguchi design to improve the practicality of our study results by letting the relationship between the output and input variables as a noise factor. As a result, the classification accuracy of neural network and decision tree turns out to be higher than that of logistic regression, when the categorical proportion of the output variable is even.

  • PDF

A Method for Selection of Input-Output Factors in DEA (DEA에서 투입.산출 요소 선택 방법)

  • Lim, Sung-Mook
    • IE interfaces
    • /
    • v.22 no.1
    • /
    • pp.44-55
    • /
    • 2009
  • We propose a method for selection of input-output factors in DEA. It is designed to select better combinations of input-output factors that are well suited for evaluating substantial performance of DMUs. Several selected DEA models with different input-output factors combinations are evaluated, and the relationship between the computed efficiency scores and a single performance criterion of DMUs is investigated using decision tree. Based on the results of decision tree analysis, a relatively better DEA model can be chosen, which is expected to well represent the true performance of DMUs. We illustrate the effectiveness of the proposed method by applying it to the efficiency evaluation of 101 listed companies in steel and metal industry.

Development of Decision Tree Program based on Web for Analyzing Clinical Information of Sasang Constitutional Medicine (사상체질 임상정보 분석을 위한 웹 기반의 의사결정 나무 프로그램 개발)

  • Jin, Hee-Jeong;Kim, Myoung-Geun;Kim, Jong-Yeol
    • Korean Journal of Oriental Medicine
    • /
    • v.14 no.3
    • /
    • pp.81-87
    • /
    • 2008
  • Sasanag Contitution Medicine(SCM) is the traditional medicine theory based on constitutional medicine in Korea. It is most import ant that a personal SCM type is determined accurately ahead of applying any Sasang treatments. For this, many researches have been studied to diagnose the SCM type using constitutional clinical data. The decision tree is a tree-structured data-mining methodology. Recently, in the Korean traditional medicine society, there have been several efforts to find diagnosing tools using the decision tree method. So, we developed a decision tree program based on web for analyzing constitutional clinical information. It can use various clinical data as input data, offer filtering function to select clinical data to be used. We can find useful factor to be influential on SCM types using this program.

  • PDF