• 제목/요약/키워드: Input data

검색결과 8,380건 처리시간 0.046초

Data Correction For Enhancing Classification Accuracy By Unknown Deep Neural Network Classifiers

  • Kwon, Hyun;Yoon, Hyunsoo;Choi, Daeseon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권9호
    • /
    • pp.3243-3257
    • /
    • 2021
  • Deep neural networks provide excellent performance in pattern recognition, audio classification, and image recognition. It is important that they accurately recognize input data, particularly when they are used in autonomous vehicles or for medical services. In this study, we propose a data correction method for increasing the accuracy of an unknown classifier by modifying the input data without changing the classifier. This method modifies the input data slightly so that the unknown classifier will correctly recognize the input data. It is an ensemble method that has the characteristic of transferability to an unknown classifier by generating corrected data that are correctly recognized by several classifiers that are known in advance. We tested our method using MNIST and CIFAR-10 as experimental data. The experimental results exhibit that the accuracy of the unknown classifier is a 100% correct recognition rate owing to the data correction generated by the proposed method, which minimizes data distortion to maintain the data's recognizability by humans.

Memory-based Pattern Completion in Database Semantics

  • Hausser Roland
    • 한국언어정보학회지:언어와정보
    • /
    • 제9권1호
    • /
    • pp.69-92
    • /
    • 2005
  • Pattern recognition in cognitive agents is based on (i) the uninterpreted input data (e.g. parameter values) provided by the agent's hardware devices and (ii) and interpreted patterns (e.g. templates) provided by the agent's memory. Computationally, the task consists in finding the memory data corresponding best to the input data, for any given input. Once the best fitting memory data have been found, the input is recognized by applying to it the interpretation which happens to be stored with the memorized pattern. This paper presents a fast converging procedure which starts from a few initially recognized items and then analyzes the remainder of the input by systematically checking for items shown by memory to have been related to the initial items in previous encounters. In this way, known patterns are tried first, and only when they have been exhausted, an elementary exploration of the input is commenced. Efficiency is improved further by choosing the candidate to be tested next according to frequency.

  • PDF

항공 LiDAR 데이터를 활용한 CFD 모델 입력자료 품질 향상에 대한 기초연구 (A Basic Study on Enhancement of Input data Quality for the CFD Model Using Airborne LiDAR data)

  • 박명하;안승만;최윤수;정인훈;전병국
    • Spatial Information Research
    • /
    • 제20권1호
    • /
    • pp.27-38
    • /
    • 2012
  • 최근 CFD 기술 발전과 보편화를 통해 소규모 지역에서의 수치기상모의 영향평가와 설계반영 기법이 단지계획과 엔지니어링 설계에 반영되는 추세이지만 수치지도에서의 건물이나 지물 높이정보 부재와 그에 따른 입력방법의 부정확성 등으로 인해 수치기상모의 결과의 신뢰성이 저하되어, 산업 현장에서 실험적 연구로만 진행될 뿐 일반 업무로는 확대되고 있지 않는 실정이다. 따라서 본 연구는 현재 대도시를 중심으로 구축되고 있는 항공 LiDAR 기술을 통해 수집된 데이터들로부터 수치기상모의에 필요한 기본 입력 자료를 자동 추출 및 구축하여 수치기상모의에 활용하고자 기존의 수치지도 및 현장조사 자료를 기반으로 하는 수치모의와 비교한 결과, 모의 범위 및 해상도가 증가할수록 초기입력자료(.in)의 생상효율성이 증가하였으며, 자료의 품질 및 해상도 또한 향상된 결과를 얻을 수 있었다. 이를 통해 향후, 도시 재개발로 인해 발생하는 입체적인 도시의 물리적 구조 변화를 항공 LiDAR 데이터를 이용함으로써 환경변화예측을 위한 수치모의에 빠르게 이용할 수 있을 것이다.

Data-based Stability Analysis for MIMO Linear Time-invariant Discrete-time Systems

  • Park, Un-Sik;Ikeda, Masao
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.680-684
    • /
    • 2005
  • This paper presents a data-based stability analysis of a MIMO linear time-invariant discrete-time system, as an extension of the previous results for a SISO system. In the MIMO case, a similar discussion as in the case of a SISO system is also applied, except that an augmented input and output space is considered whose dimension is determined in relation to both the orders of the input and output vectors and the numbers of inputs and outputs. As certain subspaces of the input and output space, both output data space and closed-loop data space are defined, which contain all the behaviors of a system, respectively, with zero input in open-loop and with a control input in closed-loop. Then, we can derive the data-based stability conditions, in which the open-loop stability can be checked by using a data matrix whose column vectors span the output data space and the closed-loop stability can also be checked by using a data matrix whose column vectors span the closed-loop data space.

  • PDF

입력 공간의 변환을 이용한 새로운 방식의 퍼지 모델링-KL 변환 방식 (A transformed input-domain approach to fuzzy modeling-KL transform approch)

  • 김은태;박민기;이수영;박민용
    • 전자공학회논문지S
    • /
    • 제35S권4호
    • /
    • pp.58-66
    • /
    • 1998
  • In many situations, it is very important to identify a certain unkown system, it from its input-output data. For this purpose, several system modeling algorithms have been suggested heretofore, and studies regarding the fuzzy modeling based on its nonlinearity get underway as well. Generatlly, fuzzy models have the capability of dividing input space into several subspaces, compared to linear ones. But hitherto subggested fuzzy modeling algorithms do not take into consideration the correlations between components of sample input data and address them independently of each other, which results in ineffective partition of input space. Therefore, to solve this problem, this letter proposes a new fuzzy modeling algorithm which partitions the input space more efficiently that conventional methods by taking into consideration correlations between components of sample data. As a way to use correlation and divide the input space, the method of principal component is ued. Finally, the results of computer simulation are given to demonstrate the validity of this algorithm.

  • PDF

방사성폐기물 처분시설에서 생태계 모델의 입력데이터 선정에 대한 고찰 (Considerations on Screening for the Input Data of the Biosphere Model in the Radioactive Waste Disposal Facility)

  • 정미선;박동국;김수진;정강일
    • 방사선산업학회지
    • /
    • 제17권2호
    • /
    • pp.209-217
    • /
    • 2023
  • The biosphere has important function in the safety assessment of a radioactive waste disposal facility. A biosphere model in the safety assessment needs various input data that contain significantly inherent uncertainties. This paper reviews the effects of the input data on the radiological impact assessment from main radionuclides such as 14C and 99Tc in the biosphere model. In addition, it is confirmed that the safety criteria is met, when the conservative input data for the intake rate, soil to plant concentration ratio, and distribution coefficients of the radionuclides are applied and probabilistic analysis are conducted in the biosphere model. Nevertheless, it is required to generate site-specific input data for the confidence building and reduce excessive conservatism in the biosphere model.

소음지도 제작시 필요한 입력데이터의 검토 및 유럽사례 비교연구 (A Review of input data needing noise mapping and comparison the Europe case)

  • 고준희;장서일;박수진
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.230-234
    • /
    • 2006
  • This study review about input data needing for noise mapping through the process for noise mapping to the Cheong-Ju on a middle-small scale city. Typically a technician know a input data in noise mapping but it is difficult to get the data. Even if we get the data, it is not regular type. So it take a long time to work out. This study is presented the guideline to solve this problems and indicate about getting data a scheme. and as it make a comparative study of the Europe case.

  • PDF

데이터 정보를 이용한 퍼지 뉴럴 네트워크의 새로운 설계 (A New Design of Fuzzy Neural Networks Using Data Information)

  • 박건준;오성권;김현기
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.273-275
    • /
    • 2006
  • In this paper, we introduce a new design of fuzzy neural networks using input-output data information of target system. The proposed fuzzy neural networks is constructed by input-output data information and used the center of data distance by HCM clustering to obtain the characteristics of data. A membership function is defined by HCM clustering and is applied input-output dat included each rule to conclusion polynomial functions. We use triangular membership functions and simplified fuzzy inference, linear fuzzy inference, and modified quadratic fuzzy inference in conclusion. In the networks learning, back propagation algorithm of network is used to update the parameters of the network. The proposed model is evaluated with benchmark data.

  • PDF

소유역 지표유출의 공간적 해석을 위한 지리정보시스템의 응용모형(II) - 격자 물수지 모형을 위한 GIS응용 모형 개발 - (GIS Application Model for Spatial Simulation of Surface Runoff from a Small Watershed( II))

  • 김대식;정하우;김성준;최진용
    • 한국농공학회지
    • /
    • 제37권5호
    • /
    • pp.35-42
    • /
    • 1995
  • his paper is to develop a GIS application model (GISCELWAB) for the spatial simulation of surface runoff from a small watershed. The model was constituted by three submodels : The input data extraction model (GISINDATA) which prepares cell-based input data automatically for a given watershed, the cell water balance model (CELWAB) which calculates the water balance for a cell and simulates surface runoff of watershed simultaneously by the interaction of cells, and the output data management model (GISOUTDISP) which visualize the results of temporal and spatial variation of surface runoff. The input data extraction model was developed to solve the time-consuming problems for the input-data preparation of distributed hydrologic model. The input data for CELWAB can be obtained by extracting ASCII data from a vector map. The output data management model was developed to convert the storage depth and discharge of cells into grid map. This model enables to visualize the spatial formulation process of watershed storage depth and surface runoff wholly with time increment.

  • PDF

클러스터 분석을 위한 IRC기반 클러스터 개수 자동 결정 방법 (Systematic Determination of Number of Clusters Based on Input Representation Coverage)

  • 신미영
    • 전자공학회논문지CI
    • /
    • 제41권6호
    • /
    • pp.39-46
    • /
    • 2004
  • 클러스터 분석에 있어 중요한 문제 중의 하나는 주어진 데이터에 내재된 적절한 클러스터의 수를 찾아내는 것이다. 본 논문에서는 이러한 클러스터의 개수를 체계적으로 결정하기 위하여 IRC (Input Representation Coverage) 개념을 새로이 정의하고, 이를 이용하여 주어진 데이터에 적합한 클러스터의 개수를 자동 결정하는 방법을 제시한다. 또한, 이러한 방법의 유용성 및 응용성을 알아보기 위하여 가상 데이터를 가지고 분석 실험을 하였으며, 실험을 통해 데이터에 내재된 실제 클러스터의 개수를 찾아내는 데에 제안된 방법이 매우 유용하게 사용될 수 있음을 보여준다.