Memory-based Pattern Completion in
Database Semantics

Roland Hausser*

Friedrich-Alexander-Universitdt Erlangen-Nirnberg

Roland Hausser. 2005. Memory-based Pattern Completion in
Database Semantics. Language and Information 9.1, 69-92. Pattern
recognition in cognitive agents is based on (i) the uninterpreted input data
(e.g. parameter values) provided by the agent’s hardware devices and (ii)
and interpreted patterns (e.g. templates) provided by the agent’s memory.
Computationally, the task consists in finding the memory data corresponding
best to the input data, for any given input. Once the best fitting memory data
have been found, the input is recognized by applying to it the interpretation
which happens to be stored with the memorized pattern.

This paper presents a fast converging procedure which starts from a few
initially recognized items and then analyzes the remainder of the input by
systematically checking for items shown by memory to have been related to
the initial items in previous encounters. In this way, known patterns are tried
first, and only when they have been exhausted, an elementary exploration
of the input is commenced. Efficiency is improved further by choosing the
candidate to be tested next according to frequency. (Universitdt Erlangen)

Key words: Database Semantics, concepts, geons, features, proplets, case-
based recognition, semantics fields, indexing, retrieval, pattern completion

The elementary features provided by the input hardware of a cognitive agent may
be combined in many different ways, in different modalities, and at different lev-
els of complexity, creating a huge search space. The software problem of pattern
matching is to classify any given input constellation without having to try a po-
tentially very large number of interpreted patterns, as in linear search. In other
words, there is the task of finding an efficient procedure for going from raw input
data to corresponding patterns stored in memory. In addition, the system must be
capable of analyzing and storing brand-new constellations of raw da’ca, such that
they will be recognized when encountered a second time.

These tasks are treated here with the hand-in-glove combination of an algo-
rithm and a data structure. The system, called Database Semantics (DBS), de-

* Computational Linguistics Uni Erlangen (CLUE), Bismarckstr. 6, D-91054 Erlangen, Ger-
many. E-mail: rrh@linguistik.uni-erlangen.de. Fax: +49 9131 852 9251

(© 2005 Korean Society for Language and Information

Language and Information Volume 9 Number 1

termines the storage location of any input in terms of properties provided by the
input analysis, such that similar analyses — modulo some primary attribute(s) -
are stored at adjacent locations, in the order of their arrival (token line, cf. 6.1).
Memory-based pattern completion in DBS proceeds from the partial analysis of
the input to the analysis-based retrieval of similar items. It utilizes the fact that
the number of relations between items stored in memory is finite and much smaller
than the infinite number of relations resulting from their abstract combinatorics.

1. The spatial organization of semantic fields

Designing a procedure for pattern recognition raises the question of choosing the
right data structure. For example, should the spatial organization of cognitive
content in the brain be treated as necessary for efficient retrieval, or as accidental,
resulting from the history of evolution but with no functional consequence for the
abstract software design?

As instances of meaningful spatial organizations of content consider the follow-
ing representations of (a) a face, (b) a temporal sequence, and (c) an is-a hierarchy.
Such neighborhoods forming coherent areas of cognitive content are called semantic
fields in linguistics:

1.1 Simplified examples of semantic fields
a) body areas - b) temporal sequence

breakfast—drive—~work—lunch—-work—drive~diner

c) is—a hierarchy thing

/\

animal object

mammal bird fish

/N

dog cat horse

In this representation the relations between, for example, the eyes, the nose, the
mouth, etc., are expressed in terms of their spatial organization, and similarly for
the temporal sequence and the hierarchy. The question is whether or not such a
‘natural’ organization at the lowest machine level does per se facilitate efficient
retrieval of a particular item.!

As a theoretical answer, let us consider the corresponding case of a library
where the books may be stored in accordance with some physical property, for
example, all small books in the first shelve, all medium size books in the second
shelve, and all large books in the third shelve. Other, similar storage principles

1 At this point, we simply assume that retrieval is a necessary part of cognition. Section 6
describes cognitive procedures in which retrieval plays a clearly defined, vital role.

70

Roland Hausser Memory-based Pattern Completion

are arranging the books in accordance with the color of their covers, the temporal
order of their purchase, or their topic.

The retrieval problem posed by these different storage principles has an ab-
stract solution which is as general as it simple. It consists in building a library
catalog. Each catalog card specifies (i) a key word, for example the size or color
of the book, or, more realistically, the name of the author, the title, or the topic,
and (ii) the location. In this way, the catalog cards may be ordered alphabetically,
based for example on the last name of the author, while the books may be phys-
ically stored in accordance with any spatial ordering principle of choice, even no
principle at all.

Whenever a certain book is to be retrieved, it is simply looked up in the
alphabetical catalog and the card in question will tell its exact location. The only
costs of this method are (i) building the catalog (indexing) and (ii) taking care
to always bring each book back to its specified location (storage). Today these
costs are minimized by using computers, which allow to do storage and retrieval
automatically, greatly increasing efficiency.

If location can be made irrelevant by coding the relevant positions with the
help of a catalog, then the books can be retrieved efficiently no matter where they
are being stored. Accordingly, any ‘natural’ organization of cognitive content can
be treated as a product of evolutionary history rather than inherent efficiency.

As an example of applying the catalog solution to semantic fields, consider the
following proposal:

1.2 Indexing semantic fields with a catalog

catalog of concepts semantic fields

animal -,

breakfast
bird.
cat, '

N W N e

Bira' fish

“. mammal

dog cat hc;fsc 10
123 45678 9101112131415

71

Language and Information Volume 9 Number 1

This example contains the same semantic fields as 1.1. In addition, (i) there is an
alphabetical list of all the elements contained and (ii) there is a grid of numbers
characterizing the location of each element in terms by an ordered pair. The re-
lation between an element in the catalog, e.g. bird, and its location, e.g. (6,9), is
indicated by means of a dotted line.

For purposes of retrieval, the catalog solution 1.2 is much more versatile and
efficient than the purely graphical representation 1.1. For example, to find the lo-
cation of the element bird in the graphical representation, we have to remember to
look in the is-a hierarchy with the top node thing, whereas the catalog representa-
tion provides the location of bird directly.

2. Extrinsic relations
If we abandon the graphical representation and rely only on the location of the
items relative to an external grid, the semantic fields illustrated in 1.2 may be

shown as follows:

2.1 Representing semantic fields by extrinsic relations

animal (6,8) horse (5,10)
breakfast (1,6) lunch (9,6)
bird (6,9) mammal (3,9)
cat (3,10) mouth (4,4)
dog (2,10) neck (4,5)
diner (6,15) nose (4,3)
drive (13,6) object (10,8)
ear (2,2) (6,2) thing (8,7)
eye (3,1) (5,1) work (11,6)
fish (8,9)

In the transition from 1.2 to the catalog 2.1 of names and pairs of numbers there
is clearly something being lost. For example, the intuitively relevant relations be-
tween the eyes, the nose, and the mouth in the face are now characterized only
indirectly: they must be reconstructed from the catalog by translating the num-
bers back into locations.

Furthermore, there are many equivalent ways to define the external grid simply
because, for example, the same face may be represented in different sizes or moved
in space. Thus, a definition of semantic fields in terms of locations defined relative
to an external grid is largely accidental. In order to characterize the necessary
properties of a semantic field we must replace locations in a geometrical space with
intrinsic relations in a conceptual space.

3. First example of intrinsic relations: phrase structure tree
The literature on conceptual space is as huge as it is diverse? and here is neither the

place nor the space to review it. Instead let us explain the correlation between the
retrieval of content, on the one hand, and the representation of intrinsic relations

2 Prominent examples are Lakoff (1987), Lakoff and Johnson (1980), Fauconnier (1994), Schank
and Abelson (1977), Johnson-Laird (1983), Sowa (1984), Wierzbicka (1980).

72

Roland Hausser Memory-based Pattern Completion

between contents at various levels of abstraction, on the other.

As our first example, we use the phrase structure trees familiar from the gram-
matical analysis in nativist linguistics. To get an intuitive understanding of the
options for defining a conceptual space and the necessary choices between them we
begin with the transition from (i) a phrase structure tree to (ii) a corresponding
catalog:

3.1 Translating a phrase structure tree into a catalog

S 1 John 4,5)
/\ Jlia (14
knows (24
NP VP 2 N (1,3) 44)
' A NP (1,2) 4.3)
S 2,0
N v NP 3 A% 2,3
} l VP 32
Julia knows 1\11 4
John 5

1 2 3 4
The tree structure on the left combines a graphical representation with a grid of
numbers. The catalog on the right relies exclusively on the characterization of
location in terms of catalog names and pairs of numbers provided by the grid, in
analogy to 2.1.

This catalog solution is suitable to index large numbers of phrase structure
trees, as in a tree bank, providing for efficient retrieval: it directly specifies the
location of all S nodes, all NP nodes, etc., relative to an external grid. The intuitive
intrinsic relations making the tree structure meaningful to the linguist are lost,
however.

What are the intrinsic relations of a phrase structure tree? In the literature,
phrase structure trees have been analyzed in terms of immediate dominance and
linear precedence (Gazdar et al., 1985; Shieber, 1986) between nodes. Using the
format of Database Semantics, these intrinsic relations may be coded as follows:

3.2 Coding a phrase structure tree as proplets in a word bank

[name: John
mo: N

da:

pr:

fo!

[tn: 23
name: Julia
mo:

da

pr:

fo: knows
tn: 23

I name: knows
mo: V

da:

pr: Julia
fo: N

Ltn: 23

John

Julia

knows

73

Language and Information Volume 9 Number 1

[name: N name: N
mo: NP mo: NP
da: Julia da: John
N
pr: pr: knows
fo: V fo:
tn: 23 tn: 23
"name: NP name: NP
mo: S mo: VP
da: N da: N
NP pr: pr: V
fo: VP fo:

tn: 23 tn: 23
o

name: S

mo:

da: NP, VP

pr:

fo:

tn: 23
Frame: Vv
mo: VP

da: knows
pr: N

fo: NP

tn: 23
Fname: A%
mo: S

da: V, NP
pr: NP

fo:

Ltn: 23

\23

The above proplets all have the same attributes, namely name of the item rep-
resented, the mother node mo, the daughter node(s) da, the preceding node pr,
the following node fo, and the tree number tn (here 23), which holds the proplets
belonging to the same tree together. Proplets which are similar in the sense that
their first attributes, here name, have the same value are stored in the order of
arrival in the same token line (see N and NP).

By recoding the necessary properties of the phrase structure tree in terms of
the attributes name, mo, da, pr, and fo, the catalog solution 3.1 for retrieving nodes
relative to grid locations is being replaced by an analysis specified in terms of node
name, dominance, and precedence.> This analysis is used for (i) storing similar
proplets in the same token line and for (ii} retrieving similar proplets for any given
input analysis.

As an example of retrieval consider a search for an N node dominated by NP
and preceded by knows, using 3.2 as the database. This search would be based on
the following pattern:

3.3 Search pattern for a node in a phrase structure tree

name: N
mo: NP
da: «

pr: knows
fo: 8

tn: vy

Proplet patterns differ from proplet tokens in that some of their values are variables,
here o, 3, and v. Assuming that 3.2 is expanded to represent a large tree bank,
a search with the pattern 3.3 would be applied to the token line of N, checking
each proplet, going either from left to right or from right to left. The result are all

proplets representing nodes in the tree bank fitting the pattern (in 3.2 the result
would be the second proplet in the token line starting with N).

3 If desired, locations relative to a grid may be specified as well, using the additional attribute
loc in each proplet.

74

Roland Hausser Memory-based Pattern Completion

4. Second example of intrinsic relations: is-e¢ hierarchy

Representing phrase structure trees as proplets in a word bank provides an effi-
cient solution for retrieval. As intrinsic relations for characterizing grammatical
structure, however, dominance and precedence are much too weak.* This may be
demonstrated by comparing the proplet analysis of a phrase structure tree in the
previous section with the following proplet analysis of the is-a hierarchy shown in
the examples 1.1 and 1.2.

4.1 Coding an is-a hierarchy as proplets in a word bank

is-a: thing

inst: mammal bird fish
sh: 25

[name: bird

bird is-a: apimal

inst:

[name: animal
animal

is-a: mammal
inst:

sh: 25

3

name: dog
is-a: mammal
inst:

sh: 25
[name: fish
is-a: animal
inst:

fish

horse

is-a: animal
inst: dog cat horse
{sh: 25
name: object
is-a: thing
inst:
sh: 25
[name: thing }

Fname: mammal
mammal

object

is-a:
inst: animal object
Lsh: 25

thing

As a straightforward tree structure, the is-a hierarchy could have been coded in
terms of dominance and precedence, like 3.2. Instead, however, we use two domain-
specific intrinsic relations, namely is-a and inst, for ‘instantiates’. These are se-
mantically much more meaningful than dominance and precedence because they
characterize subset relations. For example, animal is characterized as a thing and
instantiated by mammal, bird, and fish.?

The elements of the is-a hierarchy are held together with the attribute sh,
for ‘semantic hierarchy’, which takes a common number as value (here 25). A
corresponding analysis for the has-a hierarchy would be based on the intrinsic
relations has-a and is-part-of.

4 This has not gone unnoticed in nativist linguistics, where phrase structure tree analyses have
been propped up with the auxiliary principle of constituent structure, the additional procedure
of unification, and the import of truth-conditional semantics.

5 Note that the word bank representing the is-a hierarchy contains no proplets representing non-
terminal nodes like S, N, NP, etc., in contradistinction to the word bank 3.2 representing a
phrase structure tree.

75

Language and Information Volume 9 Number 1

Example 4.1 shows the importance of choosing the right internal relations for
a meaningful empirical analysis. This holds also for the grammatical analysis of
natural language. Instead of dominance and precedence we choose the traditional
intrinsic relations of functor, argument, and modifier. Consider the following re-
analysis of example 3.1 as a set of proplets:

4.2 Representing Julia knows John as a set of proplets

noun: Julia verb: know noun: John
fne: know arg: Julia John fnc: know
mdr: mdr: mdr:

prn: 22 prn: 22 prn: 22

In contradistinction to 3.1 and 3.2, this representation is semantically complete.
The intrinsic relations of functor, argument, and modifier are represented by the
attributes fnc, arg, and mdr, respectively. The noun proplets Julia and John specify
the verb proplet know as the value of their fnc attribute, and the verb proplet know
specifies the noun proplets Julia and John as the values of its arg attribute. The
three proplets are characterized as belonging to the same proposition by having a
common prn value (here 22).

5. Rule-based recognition: the hearer mode

The retrieval required by memory-based recognition must be preceded by storage.
After all, before the data provided by memory can be used for recognition they
must have been stored there in the first place. Storage includes the analysis and
interpretation of the raw input data.

As an example consider the hearer-mode in natural language communication.
It requires that unanalyzed surfaces, such as the sequence Julia knows John, are
lexically analyzed, syntactic-semantically interpreted, and then stored. This pro-
cedure is illustrated by the following derivation:

5.1 Syntactic-semantic interpretation in DBS

Julia knows John

lexical lookup | ‘ l

noun: Julia verb: know noun: John
fnc: arg: fnc:

mdr: mdr: mdr:

[prn: pro: m:

syntactic—semantic parsing:-

[noun: Julia +know

fnc: arg:
! mdr: mdr:

lprn: 22 prn:

[noun: Julia] [verb: kno ~John
2 fnc: know arg: Julia e

mdr: mdr: mdr;

lprn: 22 prn: 22 m:

result of syntactic—semantic parsing:

noun: Julia | |[verb: know noun: John
fnc: know arg: Julia John| |fnc: know
mdr: mdr: mdr;

lprn: 22 prn; 22 rn: 22

76

Roland Hausser Memory-based Pattern Completion

Lexical lookup consists in matching an unanalyzed surface, for example Julia, with
a corresponding value of the first attribute of a lexical proplet. Lexical proplets are
stored in the agent’s memory as the result of language learning. They are isolated
proplets because most of their attributes have no values and are therefore not yet
connected to other proplets.

The task of syntactic-semantic parsing is to turn isolated proplets into con-
nected proplets by means of value copying. In line 1, the noun value Julia of the
first lexical proplet is copied into the arg value of the second, and the verb value
know of the second proplet is copied into the fnc attribute of the first. The result
is shown in line 2.

Next the verb value know of the second proplet is copied into the fnc attribute
of the third proplet, and the noun value John of the third proplet is copied into the
arg attribute of the second. In the course of this procedure, the control structure
provides the proplets with a common prn value, here 22. The three proplets derived
are ready to be stored at the end of the alphabetically ordered token lines John,
Julia, and know of the hearer’s word bank.

The syntactic-semantic interpretation shown in 5.1 is based on the rules of a
time-linear LA-grammar, called LA-hear. Consider the following example, which
illustrates the first combination step of 5.1 {explanations in italics):

5.2 Example of an LA-hear rule application

rule name ss pattern nw pattern operations rule package

. [noun: « verb: 3 COpy @ nw-arg
rule level NOM+FV: [fnc:] [arg'.] copy B ss-fnc {FV+0BJ, ...}

noun: Julia} [verb: know

fnc: arg:
proplet level mdr: mdr:
prn: 22 prn:

An LA-grammar rule consists of (i) a rule name, (ii) a pattern for the sentence
start (ss), (iii) a pattern for the next word (nw), (iv) a set of operations, and (v)
a rule package. The ss and nw patterns are specified as feature structures with
variables and constants, which are matched with the input, here language proplets.
A rule pattern matches a proplet iff (a) the attributes of the pattern are a subset
of the attributes of the proplet and (b) the values of the pattern are compatible
with the corresponding values of the proplet.

If the pattern matching of a rule is successful, the variables of the patterns are
bound to the corresponding proplet values, and the rule operations are executed
at the proplet level. The result is a new sentence start (ss’). After retrieval of a
new next word, the rules of the current rule package are applied to the new input.
If more than one rule in the current rule package is successful on the current
input, more than one derivation branch is continued in parallel (ambiguity). If the
patterns of a rule do not match the input proplets, the rule fails, and the derivation
branch in question is discarded. The process of time-linear combination continues
as long as (i) at least one derivation branch is successful and (ii) a next word is
available.

77

Language and Information Volume 9 Number 1

In 5.2, the first input proplet is provided by the start state and the second by
lexical lookup. The pattern matching is successful, and the variables o and 3 are
bound to the values Julia and know, respectively. The operation copy a nw-arg.
copies Julia into the arg slot of the verb; the operation copy § ss-fnc copies know
into the fnc slot of the noun. The output is as follows:

5.3 Result of the LA-hear rule application

noun: Julia verb: know

fnc: know arg: Julia
mdr: mdr:
rm: 22 rn: 22

In the next combination, the current result serves as the sentence start while lexical
lookup provides the isolated proplet John as the next word.

6. Retrieval in different cognitive operations of DBS

Retrieval in Database Semantics is based on a search pattern like 3.3, whereby
the degree of specificity depends on the use of variables vs. constants. A search
begins by entering the token line corresponding to the value of the first attribute
of the proplet pattern. From there, the proplet pattern is applied sequentially to
the items in the token line. '

Executing one search operation after another is called a navigation through
the word bank. One kind of navigation is based on the repeated use of the same
search pattern, as in question answering. As an example, consider a word bank
with the following token line:

6.1 Example of token line with a search pattern

noun: girl noun: girl noun: girl] [noun: girl noun: girl
. fnc: walk fnc: sleep fnc: eat fnc: read fnc: eat
girl mdr: blonde| {mdr: young| | mdr: big mdr: smart mdr: o
rn: 10 prn: 12 prn: 15 rn: 19 rn: 3

This token line contains all the girl proplets, specifying for each in its fnc attribute
what the girl in question did: the blonde girl walked, the young girl slept, the
big girl ate, etc. The temporal order of arrival is indicated by (i) the sequence of
storage and (ii) the prn values.

The search pattern at the end of the token line, containing the variables «
and [3, represents the wh-question Which girl ate [the cookie]? Applying the search
pattern to the right-most token fails because the constants eat and read do not
agree. Applying the search pattern to next token to the left, however, is successful,
binding the variable o to the value big and the variable g to the value 15. Thus
the big gir! is a potential answer to the question.

To complete the answer, a second kind of navigation is used. Other than the
first kind, it goes across different token lines. This is based on deriving a new
search pattern from the current proplet (here girl with the prn value 15). The new

78

Roland Hausser Memory-based Pattern Completion

pattern is constructed from the fnc and prn values of the current proplet. When
this verb proplet is retrieved from the token line of eat, its arg attribute will specify
what the girl in question consumed. If the value is cookie, the wh-question is
successfully answered: it is the big girl with the prn value 15. If the value is not
cookie, the girl token line is searched for another proplet with the fnc value eat, and
the procedure is repeated.

The second kind of navigation, based on deriving new search patterns from
current proplets, is also used for activating propositional content, for example as
the basis of language production. This kind of navigation is handled by a kind of
LA-grammar which is called LA-think. For example, assuming that the proplets
of 4.2 have been sorted into the token lines John, Julia and know of the agent’s
word bank, and the current focus point is at the know proplet, then the following
LA-think rule will move the navigation to the Julia proplet:

6.2 Example of an LA-think rule application

rule name ss pattern nw pattern operations rule packoge

[verb: B noun: o s

rule level V_N_V: arg: XayY fnc: B output position ss {VN.V, ...}
prn: k prn: k mark o ss

[verb: know

arg: Julia John

mdr:

| prn: 22

proplet level

The ss pattern of the rule matches an activated proplet in the word bank, binding
the variable 3 to the value know, « to Julia or John, and k to 22. Assuming that o
has been bound to Julia, the rule retrieves (activates) the Julia proplet using the prn
value 22, and returns to the verb proplet (operation output position ss). In order
to prevent repeated traversal of the same proplet (relapse, see tracking principles,
Hausser (1999, p. 454)), the arg value currently retrieved is marked:

6.3 Result of the LA-think rule application

verb: know noun: Julia
arg: ##Julia John fnc: know
mdr: mdr:

rn: 22 rn: 22

Next, the rule V_.N_V can apply again (see rule package), this time activating the
proplet John.® There are several other kinds of navigation in Database Semantics,
the most important being inference (cf. Hausser (2001)).

6 Given that any proplet in the word bank usually provides more than one possible successor, LA~
think must make choices. The most basic solutions are either random choices or fixed choices.
For rational behavior, including meaningful natural language communication, however, the LA-
think grammar must be refined into a control structure which chooses between continuation
alternatives based on the evaluation of external and internal stimuli, the frequency of previous
traversals, learned procedures, theme/rheme structure, etc. See Hausser (2002).

79

Language and Information Volume 9 Number 1

7. Pattern completion

The data structure of a word bank containing proplets in combination with the
time-linear algorithm of LA-grammar is suitable not only

1. for reading content coded in natural language into the database,
2. for navigating through the database to activate content,

3. for reading activated content out of the database using natural language,
and :

4. for inferencing,
but also

5. for pattern completion.

The reason for this is the use of functor-argument structure and coordination as the
two basic internal relations of natural language, coded directly as a bidirectional
pointering between proplets.

As an example illustrating point 5, consider the following technical procedure
in the hearer-mode: Whenever a given sentence start is to be combined with a
next word, the system searches in the word bank for the most frequent continua-
tion to this sentence start, defined (i) in terms of morphosyntactic properties of the
next word, (ii) the kind of its syntactic-semantic attachment, and (iii) its concept.
When this most frequent continuation of previous interpretations has been deter-
mined for the current sentence start, the system actively checks whether or not it
is matched by the current next word (as an unanalyzed raw surface).

More specifically, in example 5.2 the sentence start consists of the proplet Julia.
To determine the most frequent continuation, the system searches the token line of
Julia for the most frequent fnc value, e.g. know, and checks whether the next word
is indeed know. If the result is negative, the system checks for the next frequent
fnc value, etc.

In this way, the hearer-mode would not rely solely on its ability to accurately
recognize isolated next words and compute their combination with the current
sentence start, but rather attempt to reduce the search space by suggesting likely
properties of the next word candidates, based on previous continuations stored in
memory. This procedure would not replace rule-based lexical lookup and syntactic-
semantic parsing, but rather be used to improve its average efficiency when faced
with a large number of combinatorial possibilities.

8. Case-based recognition
At the level of syntactic-semantic parsing in the hearer-mode, memory-based hy-
potheses about the next word are merely an option for improving average efficiency.

This is because the native speakers’ linguistic intuitions are sufficiently general and
precise to be modeled almost completely by the lexical lookup and the rules of an

80

Roland Hausser Memory-based Pattern Completion

LA-grammar system. Variations of pronunciation and syntactic-semantic struc-
ture are comparatively limited.

At the lower levels of pattern recognition, however, the variety of possible
interpretations may be (i) very large and (ii) of a non-general nature in the sense
that they depend more on the individual’s prior experience than the conventions
of the language community. Thus we have two extremes, namely the rule-based
and the case-based method.”

Rule-based recognition has already been illustrated with the example of natural
language interpretation in the hearer-mode (Section 6). As an example of case-
based recognition consider the following definition:

8.1 Generic LA-grammar for one-dimensional input
ST.S = {[a], r-1}

feature: o] [feature: g .
copy ss-feature nw-previous

previous: previous:
copy nw-feature ss-next
next: next:

r-1: {r-1}

ST.F = {([feature: B], rpr—1) }

This generic LA-grammar uses the generic intrinsic relations previous and next, and
is based on generic lexical lookup, defined as follows:

8.2 Generic lexical lookup for one-dimensional items

long attributes - abbreviated attributes
feature: « £
previous: p:
next: n:
word number: wn:
proposition number: prn:

This lexical lookup can be applied to any item in the input sequence: the variable
o used as the value of the feature attribute is simply replaced by (an image of) the
input item in question. The result of lexical lookup is a proplet with attributes
for previous and next, word number and proposition number. While the values
for the attributes p: and n: result from the copying operations of the generic
LA-grammar 8.1, the values for the attributes wn: and prn: are provided by the
control structure of the parser.

The result of parsing an arbitrary input sequence, for example ababaaabb, has
the following form:

7 The term ‘case’ is not used here in the sense of grammatical case, but rather in the sense of
incident.

81

Langudge and Information Volume 9 Number 1

8.3 ababaabb parsed by generic LA-grammar

(f a 1 f: b f: a f£ b f: a f: a f: a f£ b
) p: a p: a p: a p: a p: a p: a p: a
n: b n: a n b n: a n: a n: a n: a n: b

wn: 1 wn: 2| jwn: 3 wn: 4 wn: 5 wn: 6 wn: 7 wn: 8
iprn: 1| |pro:l prmn: 1] |prn: 1| {prn: 1 |[prm: 1| {prn: 1] jprn: 1

p: b
n:

wn: 9
|pro: 1]

In a word bank, these proplets would be sorted into two token lines, a and b. Let
us assume that the sequence ababaaabb has been previously encountered and stored
many times. After a pause, an initial a is presented to the system. Memory-based
recognition determines the most frequent continuation for an a proplet with the wn
value 1, and correspondingly for the rest of the sequence. In this way, next items
do not have to be recognized from scratch, but are first checked for equivalence
with promising candidates suggested by memory.

Rule-based and case-based recognition complement each other. Rule-based
recognition is prescriptive in the sense that it accepts only certain combinations.
The result is increased efficiency in recognition because of many possible combi-
nations only the legal ones are tested. The drawback of rule-based recognition,
however, is that it cannot handle any input which is does not conform to the rules.

Case-based recognition, in contrast, is receptive. It records any constellation
encountered, and reflects the regularity and coherence of the agent’s environment.
The drawback of case-based recognition is that its analysis is comparatively crude.
Also, it is not efficient when the actual input item corresponds only to the third or
fourth candidate suggested by memory.

If an input structure is brand-new, i.e. has never been encountered before,
recognition has to be done from scratch. As soon, however, as the structure in
question is encountered for the second time, case-based recognition applies. If a
structure is encountered very often, the generic LA-grammar and lexicon of the
case-based method may evolve into a rule-based variant, like 5.2, with domain-
specific attributes for intrinsic relations which characterize the content better than
generic spatial co-occurrence.8

8 The transition (i) from receptive case-based recognition to prescriptive rule-based recognition
and (ii) from one- to multi-dimensional LA-grammars are large separate topics, which cannot
be handled here. An interesting topic would be the design of a two-dimensional generic LA-
grammar which is then scaled-up to a rule-based LA-grammar which incorporates the Waltz-
algorithm (Waltz, 1975).

It is known that the Waltz-algorithm is generally N'P-complete, though in practice its com-
plexity is usually much lower. One useful result of reconstructing the Waltz-algorithm in LA-
grammar would be to determine its LAG complexity (Hausser, 1992). The rethinking required
for the overall task described is substantial, comparable to the reconstruction of propositional
calculus in DBS (Hausser, 2003).

82

Roland Hausser : Memory-based Pattern Completion

9. Concepts

In order for memory-based recognition based on a generic LA-grammar to work,
the system must have available some hardwired, innate distinctions. Otherwise,
all elementary items read as proplets into the word bank would each have their
own token line. What we need instead is a storage of similar items in the same
token line, which requires the ability to recognize similarity in the first place.

Recognition of similarity and dissimilarity is based on patterns which are usu-
ally called concepts. Different analyses of concepts are the schema (Piaget, 1962;
Stein and Trabasso, 1982), the template (Neisser, 1964), the feature (Hubel and
Wiesel, 1962; Gibson, 1969), the prototype (Bransford and Franks, 1971; Rosch,
1975), and the geon (Biederman, 1987) approach. The definition of concepts raises
the following questions:

1. what are the basic parts of a concept?

2. what are the basic parts made of?

3. what are the rules for combining the parts?

There is a fourth question hidden behind these three, namely: at what level of
detail should the basic parts be defined?

From an abstract theoretical point of view, we are looking for that level of
abstraction, where the necessary properties of the overall system cleanly separate
from the accidental properties. From a computational point of view, we are look-
ing for that particular degree of abstraction which happens to result in optimally
efficient pattern recognition, indexing, retrieval, etc.

The importance of the fourth question is illustrated by the historical now some-
what toned down battle between two competing theories in cognitive psychology,
namely features versus templates or prototypes, waged on the basis of recoghition
experiments. Roughly speaking, features take an atomistic position (all concepts
are composed from a few elementary parts used many times), while templates take
a holistic position (each concept has its own template, composition is best not used
at all).

Computationally, these two extremes have inverse, complementary merits. For
example, if there are only 50 different kinds of objects to be recognized, a holistic
approach using templates would be reasonable: the cost of running through 50
templates in the worst case is compensated by the efficiency of the matching.

However, if there are a thousand different kinds of objects to each be matched
as a whole, the cost of checking all templates in the worst case would outweigh any
advantage in matching (if there is any left, given the increased complexity® of the
templates). A compositional approach, in contrast, would do its pattern matching
with comparatively few basic patterns, e.g., features, which are used over and over
again to form complex concepts from basic parts.

9 This increase of complexity follows from the necessity to differentiate the large number of
individual templates from each other.

83

Language and Information Volume 9 Number 1

10. Geons

Why choose between features and templates if we can have the best of both? In
cognitive psychology, there is a fairly recent proposal, called RBC (Recognition-
by-Components) or geon theory, which makes the most of the inverse merits of
the holistic and the atomistic approach by taking the middle of the road. Visual
recognition is analyzed in terms of neither features nor templates, but rather in
terms of some intermediate structures, called geons — from which all the parts for
complex objects are built.
RBC or geon theory is described by Kirkpatrick (2001) as follows:

The major contribution of RBC is the proposal that the visual sys-
tem extracts geons (or geometric ions) and uses them to identify ob-
jects. Geons are simple volumes such as cubes, spheres, cylinders, and
wedges. RBC proposes that representations of objects are.stored in
the brain as structural descriptions. A structural description contains
a specification of the object’s geons and their interrelations (e.g., the
cube is above the cylinder).

The RBC view of object recognition is analogous to speech perception.
A small set of phonemes are combined using organizational rules to pro-
duce millions of different words. In RBC, the geons serve as phonemes
and the spatial interrelations serve as organizational rules. Biedermann
1987 estimated that as few as 36 geons could produce millions of unique
objects.

Consider the following examples of geons:

10.1 A small set of geons

¢ O 7

handle cylinder spout

These geons may be assembled into different complex concepts for objects such as
the following:

10.2 Combining the geons into more complex objects

o0 o

pail watering can

These complex objects raise the following question for database semantics: How
should the combinations of geons into concepts for complex objects be stored? For
example, should the handle and the cylinder of a pail be represented adjacent, as
in the graphical representations 1.1 and 10.2, or should we specify their connection
in a more abstract manner — thus opening the way to use geons as the basic key
for storage and retrieval in a database?

84

Roland Hausser Memory-based Pattern Completion

This question bears on an important application of geons in visual recognition,
namely pattern completion. If visual recognition is incremental, such that we see
some part first and then rapidly reconstruct the rest of the object, how can we get
the database to provide relevant content very fast and succinct in order to quickly
narrow down the search? .

It turns out that the data structure and the associated retrieval algorithm of
Database Semantics provide a highly efficient procedure of pattern completion. As
an example, consider recognition of a pail based on a word bank for geons:

10.3 Pattern completion during recognition

external object database of the cognitive agent

isolated geons connected geons

cup pail watering can

In this word bank, the isolated geons are the owner records and the connected
geons the member records. For intuitive appeal (and as a substitute for an explicit
formal definition of the internal relations in question), the connections between the
geons are indicated by arrows. The complex objects specified in each column of
connected geons are provided with names, i.e. cup, pail, and watering can.

Given that the external object is a pail, the agent might either first recog-
nize the handle or the cylinder — depending on the conditions of lighting or the
orientation of the object. If the cylinder is recognized first, the agent’s database
will indicate that cylinders are known to be connected in certain ways to handles
and/or spouts. This information is used to actively analyze the cylinder’s relations
to the rest of the external object (pattern completion), checking for the presence
or absence of the items suggested by the data base.

Similarly, if the handle is recognized first, the agent’s database indicates that
handles are known to be connected in certain ways to cylinders to form cups, pails,
or watering cans. If the handle-cylinder connection is recognized first, there are
two possibilities: pail or watering can. In our example, the system determines
that there is no spout and recognizes the object as a pail. "

This simple algorithm may be described somewhat more generally as follows:
Assume that the agent is faced with a complex object consisting of an open number
of geons and that one of these, e.g. B, has been recognized. Then the database
will retrieve all B items and list all their connections to other geons. The geons on

85

Language and Information Volume 9 Number 1

this list are all tried actively on the external object by checking (i) whether they
are present or absent in the external object and, if present, (ii) the nature of their
connection to B.

As soon as a second fitting geon, lets call it C, has been found, the algorithm
will retrieve all BC connections of the given type from the database, as well as all
their connections to other geons. This results in a substantially smaller list. By
repeating the process, the algorithm converges very quickly.

For specifying the connections between geons more precisely let us replace the
intuitive model illustrated in 10.3 by a full-fledged word bank format based on sub-
proplets.’® The following example expresses the same content as 10.3, but repre-
sents geons by names and codes the connections between geons (internal relations)
by means of the attributes orientation (0:) and attach (a:). Geon subproplets be-
longing to the same concept are held together by a common onm value, whereby
onm stands for object name and corresponds to prn.

10.4 Storing complex objects as geons in a word bank

isolated geons connected geons
_ . - . - . I : i
geon: cylinder geon: cylinder geon: cylinder geon: ¢y inder
. : . A o: vertical
orientation: o: vertical o: vertical a: back handle
attach: a: back handle a: top handle '
. front spout
onm: onm: cup onm: pail .
t - - onm: watering can |
[geon: handle ‘geon: handle [geon: handle [geon: handle
orientation: o: vertical o: horizontal o: vertical
attach: a: back cylinder| |a: top cylinder| |a: back cylinder
| onm: jonm: cup | onm: pail lonm: watering can |
[geon: spout [geon: spout 1
orientation: 0: diagonal
attach: a: front cylinder
| onm: lonm: watering can |

The names of elementary geons serve here as the values of certain attributes and are
represented by words of English, e.g., cylinder, handle, or spout. The orientation
of geons, represented graphically in 10.3, is represented in 10.4 by the attribute
values horizontal, vertical, or diagonal.

If the token line of, e.g., cylinder is activated in 10.4, the three connected geon
subproplets with the onm values cup, pail, and watering can contained in it specify
which geons to look for next in the object to be recognized. They are back handle,
top handle, and front spout.

10 The term proplet is used for a certain kind of data structure, whereby the value of the primary
attribute is a concept. Subproplets refer to the same kind of data structure, but with primary
attributes taking lower kinds of values, like geons or features.

86

Roland Hausser . Memory-based Pattern Completion

11. Features

So far we have constructed relations (i) between isolated and connected geons
resulting in complex concepts (Section 10), and (ii) between isolated and connected
proplets (containing these concepts) resulting in propositions (Section 5). The
analogous relation may be constructed also (iii) between isolated and connected
features, resulting in geons:

11.1 Connecting features into geons and geons into concepts

isolated | connected features = isolated geons isolated| connected geons = isolated complex concepts

cylinder| .- cylinder ¢ cylinder : cylinder -----.

‘14 [T

/ | handle | i v-handle ‘» h-handle ‘= h-handle
—/ -~ spout spout <
» . .
cylinder handle spout cup pail watering can
first stage second stage

The isolated features on the left of the first stage are for recognizing lines and
arcs of different orientation, and serve as owner records. The associated member
records are connected into constellations for a cylinder (first two columns),'! a
handle (third column),'? and a spout (fourth column).!3

At the second stage, a constellation of connected features (detected from the
raw input) is classified by means of isolated geons, here cylinder, handle, and
spout, which are provided by the database. At the third stage (not shown), the
constellation of the isolated geons detected is analyzed and classified by means of
isolated concepts provided by the database.!*

The isolated concepts are embedded as attribute values into feature struc-
tures called proplets. In this way, the semantic core, represented by the concept,
is separated from the combinatorics, represented by the other attributes of the
proplet and their values. Combining proplets rather than concepts into connected

11 The first column constitutes the left hand side and the bottom circle of the cylinder, while the
second column constitutes the right hand side and the top circle of the cylinder.

12 This column of connected features connects two ninety degree arcs into a half circle, representing
a simplified, vertically oriented handle.

13 The spout is indicated in a simplified manner as two parallel, diagonal lines.

14 In other words, connected features = isolated geons, and connected geons = isolated concepts.
What is defined at the lower stage is named at the next higher stage.

87

Language and Information Volume 9 Number 1

propositions has the advantage that the building up and processing of content can
function independently of the nature of the concepts contained in the proplets.!®
Using proplet-like structures to separate the semantic core and the combinatorics
may be done also with geons, as shown in 10.4, and with features (but is omitted
here for reasons of space).

For realizing this system as an artificial cognitive agent (robot), the features
(in the sense of cognitive psychology and neurology) must be implemented as hard-
ware for analyzing input and actuating output. Everything else, i.e., the geons,
concepts, and proplets, and the functions of cognition built on top of them, is pure
software.

This is in concord with the fact that humans are provided with vision, hearing,
etc., by nature but have to learn the structures of watering cans, mathematical for-
mulas, table manners, etc., during language acquisition, development of reasoning,
social behavior, etc. This kind of learning in natural agents has as its counterpart
the programming of these structures in artificial agents.!®

The step by step buildup from isolated features via geons and concepts to
the connected proplets of concatenated propositions may be shown graphically as
follows:

11.2 Features, geons, concepts, and context propositions

connected isolated connected

features geons proplets
. isolated connected isolated isolated
Input —*" features geons concepts | T proplets

This construction of propositions based on a set of proplets containing concepts,
which in turn are based on a smaller set of geons, which in turn are based on an
even smaller set of features, may be generalized from the visual modality to the
other modalities. For example, the concept of a cup may be composed not only of
visual geons for a cylinder and a handle, but also of ‘geons’ in an extended sense
for sound, taste, or touch.

The progression from features to geons to concepts to propositions at the con-
text level is duplicated at the language level as a progression from features to
phonemes (graphemes, etc.) to surfaces to propositions. This is in accordance
with the original analogy between geons and phonemes (cf. Kirkpatrick (2001)
cited above).

11.3 Features, phonemes, surfaces, and language propositions

input | isolated connected isolated | o4 isolated
P features phonemes surfaces proplets
connected isolated connected

features phonemes proplets

15 This move is similar to that taken by propositional calculus or predicate calculus, where sen-
tences or predicates are represented by abstract variables or constants.
16 Hopefully, machine-learning may soon help to obviate many of these programming chores.

88

Roland Hausser Memory-based Pattern Completion

During speech recognition, the input is analyzed by means of isolated features
provided by the hardware and connected to the database. Analysis of the relations
between the isolated features found in the input results in connected features.
These are classified by isolated phonemes (or graphemes) provided by the database.
Then the relations between the phonemes found in the input are analyzed, resulting
in connected phonemes. These are classified by isolated surfaces provided by the
database. The surfaces are matched with isolated proplets provided by the lexicon.
Analysis of the relations between the isolated proplets found in the input, for
example by means of parsing, results in connected proplets ready to be matched
with the context.

During speech synthesis, the inverse procedure takes place. That is, the con-
tent intended to be uttered by the speaker is initially represented by concatenated
propositions consisting of connected language proplets containing surfaces. These
surfaces are reduced step by step to the kind of features which serve to synthesize
the surfaces.

The transitions between features and propositions at the language level (cf.
11.3) and the context level (cf. 11.2) combine as shown in the following schema:

11.4 Combining the context and the language level

input | isolated connected isolated J | isolated
output features phonemes surfaces proplets language
connected isolated connected level
features phonemes proplets
A
. internal
matching
¥
connected isolated connected
features geons proplets context
input | isolated connected isolated | | isolated level
output features geons concepts proplets

Note that the structure at the language level is exactly the same as the structure
at the context level. It is just that the language level processes surfaces while
the context level processes content. Otherwise the progression from features to
geons/phonemes to concepts to proplets during recognition and from proplets to
concepts to geons/phonemes to features during action are the same. The clue is
that the meeting point between the two levels in 11.4 consists of (i) a connected
language proplet and (ii) a connected context proplet ready to be tested for internal
matching (providing the relation of reference).

12. Virtual Pattern Completion
The approach described is suitable also for handling another kind of pattern com-

pletion, namely the automatic reconstruction of the unseen side of a known object.
For example, when we see a car from one side we have a pretty good idea of what

89

Language and Information Volume 9 Number 1

it probably looks like from the other. This phenomenon has been explained on the
basis of frames (Barsalu, 1999).

When recognizing an object from a certain side, the associated frame is acti-
vated, filling in the unseen side as a hypothesis. Like any complex object, frames
may be coded as connected proplets (cf. 10.3, 10.4). In the terms of DBS, the
unseen side is reconstructed by the agent using the most frequent continuations
(stored in memory) of the seen side,

For example, if the agent has walked around different cars and noted their
symmetrical nature, then the unseen side of a new car will be reconstructed hypo-
thetically in an analogous way. The reconstruction is hypothetical because a small
dent, for example, on the unseen side of the car cannot be predicted.

Conclusion

In DBS, pattern recognition comprises the analysis and the storage of the input,
whereby the storage location is uniquely determined (i) by the result of the input
analysis and (ii) the order of arrival. Pattern completion improves the average
efficiency of a recognition analysis by suggesting candidates to look for in the input,
based on prior continuations stored in memory. Memory-based pattern completion
is an optional part of recognition, however, because it is not applicable if the input
in question has not been encountered before.

The DBS procedure of recognition is based on four levels of increasing complex-
ity, called (1) features, (2) geons, (3) concepts, and (4) proplets. At each level, three
different methods of analysis may be applied, called (a) rule-based, (b) case-based,
and (c) brand-new:

features geons concepts | proplets
rule-based al a2 a3 a4
case—based bl b2 b3 b4
brand—new cl c2 c3 c4

The analysis always proceeds from features via geons via concepts to proplets.
Because a bl-analysis (case-based at the feature level) cannot be continued with
an a2-analysis (rule-based at the geon level), for example, the derivation of any
proplet will require at most six steps.

When faced with a brand-new item, the only method applicable are generic
LA-grammars (cf. 8.1) with generic lexical lookup (cf. 8.2). At the initial, lowest
level, features are provided directly by the input hardware. Thus, when a brand-
new item is encountered again, its second analysis can be structurally correlated
to the first, at least at the level of features. At the higher levels of geons and
concepts, the distinctions of the next lower level are used in as much as they are
available.

When faced with a low frequency item, the best method available is case-based
recognition. Like brand-new recognition, case-base recognition employs generic

90

Roland Hausser Memory-based Pattern Completion

LA-grammars. Unlike brand-new recognition, however, case-based analysis is sup-
ported by memory suggesting promising candidates to be recognized next.

When faced with a high frequency item, the method of choice are non-generic
LA-grammars with specific lexical lookup, familiar from natural language anal-
ysis (cf. 5.2). These LA-grammars are highly restrictive and only accept input
conforming to explicitly defined standards of well-formedness.

At each level, rule-based recognition is tried first because it succeeds the fasted
if applicable and fails the quickest if not. Also, successful rule-based recognition
provides the qualitatively best analysis because it uses domain-specific rather than
generic internal relations. If the rule-based method fails at a given level, the case-
based method is tried next. If the case-based method fails, the ‘brand-new’ method
will succeed as the last resort. :

<References>

Barsalu, Lawrence W. 1999. Behavioral and Brain Sciences, chapter Perceptual symbol
systems. Cambridge University Press.

Biederman, Irving. 1987. Recognition-by-components: A theory of human image un-
derstanding. Psychological Review 94.2, 115-147. APA.

Bransford, J.D. and J.J. Franks. 1971. The Abstraction of Linguistic Ideas. Cognitive
Psychology 2, 331-350.

Bresnan, Joan, editor. 1982. The Mental Representation of Grammatical Relation.
MIT Press, Cambridge, Mass.

Fauconnier, Gilles. 1994. Mental Spaces. Cambridge University Press, New York.

Gazdar, Gerald, Ewan Klein, G. K. Pullum, and Ivan Sag. 1985. Generalized Phrase
Structure Grammar. Harvard University Press, Cambridge, Mass., and Blackwell,
Oxford, England.

Gibson, Eleanor J. 1969. Principles of Perceptual Learning and Development. Prentice
Hall.

Hausser, Roland. 1992. Complexity in Left-Associative Grammar. Theoretical Com-
puter Science 106.2, 283-308. Dordrecht: Elsevier.

Hausser, Roland. 1999. Foundations of Computational Linguistics, Human-Computer
Communication in Natural Language. Springer Verlag, Berlin, New York. pp. 578.
2nd edition in 2001.

Hausser, Roland. 2001. Database Semantics for Natural Language. Artificial Intelli-
gence 130.1, 27-74.

Hausser, Roland. 2002. Autonomous Control Structure for Artificial Cognitive Agents.
In H. Kangassalo et al. (eds.), Information Modeling and Knowledge Bases XIII, X111,
Amsterdam. IOS Press Ohmsha.

Hausser, Roland. 2003. Reconstructing Propositional Calculus in Database Semantics.
In H. Kangassalo et al. (eds.), Information Modeling and Knowledge Bases, XIV, Am-
sterdam. IOS Press Ohmsha.

Hubel, David H. and Torston N. Wiesel. 1962. Receptive Fields, Binocular Interaction,
and Functional Architecture in the Cat’s Visual Cortex. Journal of Physiology 160,
106-154.

91

Language and Information Volume 9 Number 1

Johnson-Laird, Philip N. 1983. Mental Models. Harvard U. Press, Cambridge, Mass.

Kirkpatrick, Kimberly, 2001. Awian Visual Cognition, chapter Object Recognition. cy-
berbook in cooperation with Comparative Cognitive Press.

Lakoff, George. 1987. Women, Fire, and Dangerous Things: What Categories Reveal
about the Mind. University of Chicago, Chicago.

Lakoff, George and Mark Johnson. 1980. Metaphors We Live by. University of
Chicago, Chicago.

Neisser, Ulric. 1964. Visual Search. Scientific American 210.6, 94-102.
Piaget, Jean. 1962. The Language And Thought of the Child. Routledge.

Rosch, Eleanor. 1975. Cognitive Representations of Semantic Categories. Journal of
Ezperimental Psychology General 104, 192-253.

Schank, Roger C. and Robert P. Abelson. 1977. Scripts, Plans, Goals, and Under-
standing. Lawrence Erlbaum, Hillsdale, New Jersey.

Shieber, S. M. 1986. A Simple Reconstruction of GPSG. In Proc. of the 11th COLING,
pp. 211-215, Bonn, Germany.

Sowa, J. F. 1984. Conceptual Structures: Information Processing in Mind and Machine.
Addison-Wesley, Reading, MA.

Stein, N. L. and T. Trabasso, 1982. Advances in the Psychology of Instruction, 2, chapter
What's in a Story? An Approach to Comprehension, pp. 213-268. Lawrence Erlbaum
Associates, Hillsdale, N. J.

Waltz, D. L. 1975. The Psychology of Computer Vision, chapter Understanding Line
Drawings of Scenes with Shadows, pp. 19-92. McGraw-Hill.

Wierzbicka, Anna. 1980. Lingua Mentalis. The Semantics of Natural Language. Aca-
demic Press, Sidney.

Submitted on: April 12, 2005
Accepted on: June 6, 2005

92

