• Title/Summary/Keyword: Input current

Search Result 3,427, Processing Time 0.027 seconds

PFC Dual Boost Converter Based on Input Voltage Estimation for DC Inverter Air Conditioner

  • Park, Gwi-Geun;Kwon, Kee-Yong;Kim, Tae-Woong
    • Journal of Power Electronics
    • /
    • v.10 no.3
    • /
    • pp.293-299
    • /
    • 2010
  • In this paper, a single-phase PFC (Power Factor Correction) dual boost converter based on input voltage estimation is studied for DC inverter air conditioner. It is focused on improving input power factor and power quality to satisfy the recent harmonic current regulation standards. Furthermore the input voltage estimation is introduced for price competitive products. A low cost and reasonable control system is implemented using a specified high-speed 32-bit microprocessor. Their effectiveness are verified through theoretical analysis and experiments.

A Versatile Universal Capacitor-Grounded Voltage-Mode Filter Using DVCCs

  • Chen, Hua-Pin;Shen, Sung-Shiou
    • ETRI Journal
    • /
    • v.29 no.4
    • /
    • pp.470-476
    • /
    • 2007
  • In this paper, a versatile three-input five-output universal capacitor-grounded voltage-mode filter is proposed. The circuit employs two differential voltage current conveyors as active elements together with two grounded capacitors and four resistors as passive elements. The proposed configuration can be used as either a single-input five-output or three-input two-output. Unlike the previously reported works, it can simultaneously realize five different generic filtering signals: lowpass, bandpass, highpass, bandreject, and allpass. It still maintains the following advantages: (i) the employment of all grounded capacitors, (ii) no need to employ inverting-type input signals, (iii) no need to impose component choice, (iv) orthogonal control of the resonance angular frequency ${\omega}_o$ and the quality factor Q, and (v) low active and passive sensitivity performances.

  • PDF

Soft switching high power factor buck converter using loss less snubber circuit (무손실 스너버 회로를 이용한 소프트 스위칭 강압형 고역률 컨버터)

  • 구헌회;변영복;김성철;서기영;이현우
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.6
    • /
    • pp.77-84
    • /
    • 1997
  • buck type converter doesn't appear when an input voltag eis lower than an output voltage. This is the main reason the buck converter has not been used for high power factor converters. In this paper, soft switching high power factor buck converter is proposed. This converter is composed of diode rectifier, input capacitor can be small enough to filter input current, buck converter with loss less snubber circuit. Converter is operated in discontinous conduction mode, turn on of the switching device is a zero current switching (ZCS) and high powr factor input is obtianed. In addition, zero voltage switching (ZVS) at trun off is achieved and switching loss is reduced using loss less snubber circuit. The capacitor used in the snubber circuit raised output voltage. Therefore, proposed converter has higher output voltage and higher efficiency than conventional buck type converter at same duty factor in discontinous conduction mode operation. High power factro, efficiency, soft switching operation of proposed converter is veified by simulation using Pspice and experimental results.

  • PDF

Improvement of input power factor on single phase full-bridge PWM AC/DC Converter (단상 full-bridge PWM AC/DC 콘버어터의 입력 역율개선)

  • Kim, Hyun-Soo;Park, Sung-Jun;Byun, Young-Bok;Kim, Kwang-Tae;Kwon, Soon-Jae;Kim, Cheul-U
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.255-257
    • /
    • 1995
  • Many new electronic products are required to have a unity power factor and a distortion free input current waveform. In this parer, a high performance single phase AC/DC converter with input power factor correction is proposed. And each parameters are determined. Proposed control strategy has many advantages which include two Quadrants operation, simplified control circuit, high performance features and continuous Input current. The experimental results are included to verify the validity of this approach.

  • PDF

A New Interleaved Double-Input Three-Level Boost Converter

  • Chen, Jianfei;Hou, Shiying;Sun, Tao;Deng, Fujin;Chen, Zhe
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.925-935
    • /
    • 2016
  • This paper proposes a new interleaved double-input three-level Boost (DITLB) converter, which is composed of two boost converters indirectly in series. Thus, a high voltage gain, together with a low component stress and a small input current ripple due to the interleaved control scheme, is achieved. The operating principle of the DITLB converter under the individual supplying power (ISP) and simultaneous supplying power (SSP) mode is analyzed. In addition, closed-loop control strategies composed of a voltage-current loop and a voltage-balance loop, have been researched to make the converter operate steadily and to alleviate the neutral-point imbalance issue. Experimental results verify correctness and feasibility of the proposed topology and control strategies.

Dimming Control System for Multi-Fluorescent Lamp Using AC Chopper Technique (AC Chopper를 이용한 다등용 조광제어 시스템에 관한 연구)

  • 정동열;박종연
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.4
    • /
    • pp.177-182
    • /
    • 2003
  • We have proposed the dimming controller using the AC chopper technique. The AC chopper changes the amplitude of the input source voltage with the same frequency. The conventional dimming controller is operated by controlling voltage phase with the triac. It has bad characteristics of the input current THD and the input power factor But the dimming controller using the ac chopper technique has a low current THD and a good power factor. The developed dimming controller is consist of the IGBT and the low pass filter. The system is operated by the variation circuit of the input source voltage and the microprocessor.

Dimming Control System for Multi-Fluorescent Lamp Using AC Chopper Technique (AC Chopper를 이용한 다등용 조광제어 시스템에 관한 연구)

  • 정동열;박종연
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.4
    • /
    • pp.177-177
    • /
    • 2003
  • We have proposed the dimming controller using the AC chopper technique. The AC chopper changes the amplitude of the input source voltage with the same frequency. The conventional dimming controller is operated by controlling voltage phase with the triac. It has bad characteristics of the input current THD and the input power factor But the dimming controller using the ac chopper technique has a low current THD and a good power factor. The developed dimming controller is consist of the IGBT and the low pass filter. The system is operated by the variation circuit of the input source voltage and the microprocessor.

A New High Efficiency ZVZCS Bidirectional DC/DC Converter for HEV 42V Power Systems

  • Kim Chong-Eun;Han Sang-Kyoo;Park Ki-Bum;Moon Gun-Woo
    • Journal of Power Electronics
    • /
    • v.6 no.3
    • /
    • pp.271-278
    • /
    • 2006
  • A new high efficiency zero-voltage and zero-current switching (ZVZCS) bidirectional DC/DC converter is proposed in this paper. The proposed converter consists of two symmetric half-bridge cells as the input and output stages. MOSFETs of input stage are turned-on in ZVS condition, and those of output stage are turned-off in ZCS condition. In addition, MOSFETs of input and output stages have low voltage stresses clamped to input and output voltage, respectively. Therefore, the proposed converter has high efficiency and high power density. The operational principles are analyzed and the advantages of the proposed converter are described. The 300W prototype of the proposed converter is implemented for 42V hybrid electric vehicle (HEV) application in order to verify the operational principles and advantages.

A High Efficiency Phase-Shifted Full-Bridge Converter with Wide Input Voltage Range (넓은 입력전압 범위에서 높은 효율을 가지는 위상천이 풀브릿지 컨버터)

  • Han, Jung-Kyu;Choi, Seung-Hyun;Moon, Gun-Woo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.1
    • /
    • pp.66-69
    • /
    • 2019
  • This study proposes a high-efficiency phase-shifted full-bridge (PSFB) converter with a wide input voltage range. The conventional PSFB converter is a useful topology in high-power applications. This converter not only achieves the zero-voltage switching of the primary switches, but also has small RMS current in the primary side. However, because the conventional PSFB converter has large freewheeling current in the primary side when it is designed considering the hold-up time of the converter, such a converter has high conduction loss at the primary switches. To solve this problem, a new PSFB converter is proposed in this study. The experiment is implemented with an input voltage ranging from a 320 V-400 V and an output power specification of 715 W.

Analysis for Electrical Fire Possibility Using Fuzzy Logic with Input Variables of Overcurrent and Saturation Time in the Indoor Wiring (전기배선에서 과전류와 포화시간을 입력변수로 갖는 퍼지기반 전기화재가능성 분석)

  • Kim, Eun-Jin;Kim, Doo-Hyun;Kim, Sung-Chul
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.6
    • /
    • pp.34-39
    • /
    • 2015
  • The study is aimed to develop fuzzy logic system that has overcurrent and saturation time as input variable and possibility of electrical fire as output variable by making bad conductor area with physical damage to indoor wiring. Most previous studies focused on thermal characteristics depending on the current size and no study considered the current size and saturation time at the same time. Therefore, the paper made into account current value and saturation time together. To this end, it created bad conductor area half the size of IV conductor (1.6 mm) on purpose and transmit electrical current from 10A to 60A by unit of 2A to find out the thermal characteristics and saturation time for current. Based on the data that came out, the study applied fuzzy logic and established the current and saturation time as input variable and chance of fire as output variable. As a result, the center of area of the system that depended only on the existing current value was 75 while the system that applied both current and saturation time presented the chance of fire at 92. It is found that the chance of bad conductor area and deteriorated insulation of electrical wire had current and saturation time as important variables. The data can be used as basic data like deteriorated wire insulation or operation features of circuit breaker in investigating the cause of electrical fire.