• Title/Summary/Keyword: Input constraints

Search Result 324, Processing Time 0.029 seconds

The Three-Level PLA Design Using EXANOR (Mn-Zm-Fe Ferrite에서 하소 및 소결조건이 투자율과손실에 미치는 영향)

  • 조동섭;이종원;황희영
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.32 no.1
    • /
    • pp.13-23
    • /
    • 1983
  • This paper deals with the three-level PLA constructed by EXCLUSIVE-OR, AND, and OR. (abbreviated as EXANOR). Most PLA circuits have constraints on minimum chip area and minimal input lines. Thus, the reduction of PLA chip area is an important factor in design of logic circuits. In this paper, newly constructed architecture of PLA is proposed and then, its reduction effect is proved theoretically and some of selected examples are illustrated for designing three-level PLA circuits.

  • PDF

최소 자원을 사용하는 저전력 데이터 패스 할당 알고리즘

  • 문성필;김영환
    • Proceedings of the IEEK Conference
    • /
    • 2000.11b
    • /
    • pp.75-78
    • /
    • 2000
  • This paper presents a new algorithm for allocating the data path to achieve the minimum power consumption under the constraints of minimum hardware resources. In order to minimize the power consumption, the proposed algorithm tries to minimize the input transitions of functional units, unnecessary computations, and size of interconnects in a greedy manner during a]location. Experimental results using benchmarks indicate the proposed algorithm achieves 17.5% power reduction on average, when compared with the genesis-lp[1]high-level synthesis system.

  • PDF

A mathematical approach to motion planning for time-varying obstacle avoidance (시변 장애물 회피 동작 계획을 위한 수학적 접근 방법)

  • 고낙용;이범희;고명삼
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.388-393
    • /
    • 1990
  • A robot manipulator and an obstacle are described mathematically in joint space, with the mathematical representation for the collision between the robot manipulator and the obstacle. Using these descriptions, the robot motion planning problem is formulated which can be used to avoide a time varying obstacle. To solve the problem, the constraints on motion planning are discretized in joint space. An analytical method is proposed for planning the motion in joint space from a given starting point to the goal point. It is found that solving the inverse kinematics problem is not necessary to get the control input to the joint motion controller for collision avoidance.

  • PDF

A Study on Dynamic Lot Sizing Problem with Random Demand (확률적 수요를 갖는 단일설비 다종제품의 동적 생산계획에 관한 연구)

  • Kim, Chang Hyun
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.31 no.3
    • /
    • pp.194-200
    • /
    • 2005
  • A stochastic dynamic lot sizing problem for multi-item is suggested in the case that the distribution of the cumulative demand is known over finite planning horizons and all unsatisfied demand is fully backlogged. Each item is produced simultaneously at a variable ratio of input resources employed whenever setup is incurred. A dynamic programming algorithm is proposed to find the optimal production policy, which resembles the Wagner-Whitin algorithm for the deterministic case problem but with some additional feasibility constraints.

A Study on Automatic Technology for a industrial Industrial Involute Gears Design (산업용 인벌류트 치차 설계를 위한 자동화 기술에 관한 연구)

  • 조성철;변문현
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.4
    • /
    • pp.39-46
    • /
    • 1997
  • This study describes a computer aided design system on involute gear for power transmition. Input data for gear design are pressure angle $20^{\circ}$, transmitted power, gear volume, gear ratio, addendum ratio of rack, dedendum ratio of rack, edge radius of rack, allowable contact stress and allowable bending stress etc. Bending strength contact strength and scoring are considered as the design constraints. Method of optimization developed this study. The developed gear design system can design the optimized gear that minimize the number of pinion teeth with face tooth.

  • PDF

Robust Constrained Predictive Control without On-line Optimizations

  • Lee, Y. I.;B. Kouvaritakis
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.27.4-27
    • /
    • 2001
  • A stabilizing control method for linear systems with model uncertainties and hard input constraints is developed, which does not require on-line optimizations. This work is motivated by the constrained robust MPC(CRMPC) approach [3] which adopts the dual mode prediction strategy (i.e. free control moves and invariant set) and minimizes a worst case performance criterion. Based on the observation that, a feasible control sequence for a particular state can be found as a linear combination of feasible sequences for other states, we suggest a stabilizing control algorithm providing sub-optimal and feasible control sequences using pre-computed optimal sequences for some canonical states. The on-line computation of the proposed method reduces to simple matrix multiplication.

  • PDF

Input Constrained Robust Model Predictive Control with Enlarged Stabilizable Region

  • Lee, Young-Il
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.3
    • /
    • pp.502-507
    • /
    • 2005
  • The dual-mode strategy has been adopted in many constrained MPC (Model Predictive Control) methods. The size of stabilizable regions of states of MPC methods depends on the size of underlying feasible and positively invariant sets and the number of control moves. The results, however, may perhaps be conservative because the definition of positive invariance does not allow temporal departure of states from the set. In this paper, a concept of periodic invariance is introduced in which states are allowed to leave a set temporarily but return into the set in finite time steps. The periodic invariance can be defined with respect to sets of different state feedback gains. These facts make it possible for the periodically invariant sets to be considerably larger than ordinary invariant sets. The periodic invariance can be defined for systems with polyhedral model uncertainties. We derive a MPC method based on these periodically invariant sets. Some numerical examples are given to show that the use of periodic invariance yields considerably larger stabilizable sets than the case of using ordinary invariance.

Optimal actuator selection for output variance constrained control

  • 김재훈
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.565-569
    • /
    • 1993
  • In this paper, a specified number of actuators are selected from a given set of admissible actuators. The selected set of actuators is likely to use minimum control energy while required output variance constraints are guaranteed to be satisfied. The actuator selection procedure is an iterative algorithm composed of two parts; an output variance constrained control and an input variance constrained control algorithm. The idea behind this algorithm is that the solution to the first control problem provides the necessary weighting matrix in the objective function of the second optimization problem, and the sensitivity information from the second problem is utilized to delete one actuator. For variance constrained control problems, by considering a dual version of each control problem an efficient algorithm is provided, whose convergence properties turn out to be better than an existing algorithm. Numerical examples with a simple beam are given for both the input/output variance constrained control problem and the actuator selection problem.

  • PDF

A dual approach to input/output variance constrained control problem

  • Kim, Jac-Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.28-33
    • /
    • 1994
  • An optimal controller, e.g. LQG controller, may not be realistic in the sense that the required control power may not be achieved by existing actuators, and the measured output is not satisfactory. To be realistic, the controller should meet such constraints as sensor or actuator limitation, performance limit, etc. In this paper, the lnput/Output Variance Constrained (IOVC) control problem will be considered from the viewpoint of mathematical programming. A dual version shall be developed to solve the IOVC control problem, whose objective is to find a stabilizing control law attaining a minimum value of a quadratic cost function subject to the inequality constraint on each input and output variance for a stabilizable and detectable plant. One approach to the constrained optimization problem is to use the Kuhn-Tucker necessary conditions for the optimality and to seek an optimal point by an iterative algorithm. However, since the algorithm uses only the necessary conditions, the convergent point may not be optimal solution. Our algorithm will guarantee a sufficiency.

  • PDF

Machine-Part Grouping in Cellular Manufacturing Systems Using a Self-Organizing Neural Networks and K-Means Algorithm (셀 생산방식에서 자기조직화 신경망과 K-Means 알고리즘을 이용한 기계-부품 그룹형성)

  • 이상섭;이종섭;강맹규
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.23 no.61
    • /
    • pp.137-146
    • /
    • 2000
  • One of the problems faced in implementing cellular manufacturing systems is machine-part group formation. This paper proposes machine-part grouping algorithms based on Self-Organizing Map(SOM) neural networks and K-Means algorithm in cellular manufacturing systems. Although the SOM spreads out input vectors to output vectors in the order of similarity, it does not always find the optimal solution. We rearrange the input vectors using SOM and determine the number of groups. In order to find the number of groups and grouping efficacy, we iterate K-Means algorithm changing k until we cannot obtain better solution. The results of using the proposed approach are compared to the best solutions reported in literature. The computational results show that the proposed approach provides a powerful means of solving the machine-part grouping problem. The proposed algorithm Is applied by simple calculation, so it can be for designer to change production constraints.

  • PDF